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Abstract

Researchers and developers of new materials and processes often underestimate or neglect the effects
of manufacturing variability and, as a result, make overly optimistic assumptions about their technolo-
gies. In this thesis, I explore the effects of manufacturing variability and find ways to characterize
the manufacturing variability of emerging manufacturing processes. I develop a framework that con-
nects manufacturing variability to environmental impact and economic costs through the concept of
overdesign. I study examples using this framework and find that around 19% of concrete production
is used solely to overcome issues of manufacturing variability, and that reducing the variability when
producing fiber composite parts for a Boeing 787 reduces fuel consumption by millions of dollars and
saves ktons of CO2 from entering the atmosphere. I further explore the effects of manufacturing vari-
ability by considering its impacts on the commercialization process of new technologies. I consider
Additive Manufacturing (AM), a promising technology, and argue that this technology has not reached
commercial traction in great part due to our lack of understanding of the uncertainty associated with
this process. I draw parallels to fiber composites, which faced similar issues in the 1980s before a col-
laborative effort, through the Advanced Composite Technology (ACT) and Advanced General Aviation
Technology Experiments (AGATE) programs, was able to solve many of these challenges.

Finally, I consider the volumes of data available in published documents and analyze whether it
is possible to extract this information using text mining techniques, and to use these data to character-
ize the manufacturing variability of upcoming technologies. Some important challenges obstruct our
ability to extract all the important information from these documents, but important steps are made to
remove some of these challenges and I demonstrate that useful information can be extracted.

Manufacturing engineers view processes as stochastic rather than deterministic. I ultimately ar-
gue for this view to also be adopted by environmentalists, materials researchers, and decision makers.
I also further develop methods to extract and utilize manufacturing variation information.

Thesis Supervisor: Elsa Olivetti
Title: Atlantic Richfield Associate Professor of Energy Studies, Materials Science and Engineering

Thesis Supervisor: Duane Boning
Title: Clarence J. LeBel Professor, Electrical Engineering and Computer Science
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Chapter 1

Introduction

Manufacturing plays an important role in the world's economy, accounting for around 16% of global

GDP [1], and is responsible for 20% of global CO2 emissions [2]. These statistics underestimate how

influential manufacturing really is. Manufacturing has direct impacts, as it consumes energy and ma-

terials to make products. Machinery, reagents, and energy are bought and used to turn raw materials

into physical products. However, manufacturing also has far-reaching indirect impacts as all man-made

objects we interact with were at one point manufactured. Furthermore, the design of objects is intrin-

sically linked with how they can be cheaply and reliably manufactured and as a result manufacturing

is related to almost all designs of physical goods.

Manufacturing continues to play an important role in technological innovations. The stone age,

bronze age and iron, age were characterized by our abilities to manipulate and shape new materials.

The industrial revolution revolved around new approaches to mass manufacturing. Modem computa-

tion was enabled through impressive strides in ultra-precise fabrication techniques for producing com-

puter chips. The future of renewable energy is in part reliant on the fabrication of cheap and efficient

solar panels and batteries. Yet manufacturing and some of the challenges it faces may not be at the

forefront of people's minds and can be easily forgotten. In this research, I find that a key and central

idea in manufacturing, manufacturing variability, can often be neglected by those who propose new

materials, processes, or policies and that this disconnect leads to over-optimistic predictions and de-

layed timelines. Manufacturing variability, including its impacts and the potential ways to characterize

manufacturing variability, is the central topic of this thesis.

The idea of manufacturing variability starts from the fact that when two parts are manufactured

they will never be exactly the same [3]. One of the parts will be slightly bigger, stiffer, stronger and/or

will differ on any other property. As a result, these properties should be seen as random variables with

distributions rather than as point estimates. Manufacturing variability is then a measure of how tight

or spread out these distributions are.

High variability within a manufacturing process necessitates intervention. Ideally, the manufac-

turing variability can be reduced to the point where it can essentially be ignored, which is the premise

of Six Sigma [4]-[6], a set of managerial and engineering tools that are used in organizations to sys-

tematically reduce manufacturing variability. However, if reducing variability to near zero is infeasible,

as is typically the case, there are alternative strategies that must be adopted to deal with the remaining

variability. These alternative strategies have environmental and economic implications. I explore this

link between manufacturing variability and environmental/economic impacts in this work.
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Furthermore, if manufacturers do not fully understand the variation in properties as a result of a

manufacturing process, or do not understand how various processing parameters might influence this

variation, then the commercialization process of such a technology is severely impeded. It therefore

becomes important to characterize the manufacturing variability of emerging technologies. Unfortu-

nately, a large amount of manufacturing data is required to understand these distributions. These data

are hard to come by, especially for new manufacturing processes or materials. However, a wealth of data

exists in published documents. Researchers investigate various manufacturing technologies and publish

their results in academic journals. If the information contained in these documents can be extracted

and put into a structured format, the data can be analyzed and we may be able to better understand

the manufacturing variability. Recent developments in Natural Language Processing (NLP) allow us

to extract information from documents at a large scale. However, while the field of NLP is developing

rapidly, these techniques are not yet perfect, and although valuable information can be extracted using

state-of-the-art and newly developed techniques, some important challenges remain.

This thesis answers the following questions:

1) What are the effects of manufacturing variability, and why is it important?

2) Can we gather data from published documents in order to characterize manufacturing variability,
and what are challenges associated with that?

The rest of the thesis is split into three chapters plus a final chapter on conclusions. In Chapter

2, I develop a framework that can be used to think about manufacturing variability and the impacts it

has on cost and ecological footprint.

Chapter 3 focuses on why it is difficult to get an accurate measure of variability, and how this

translates into difficulties when commercializing a new technology. I also consider some historic (fiber

composites) and modern (Additive Manufacturing (AM)) examples of how manufacturing variability

can impede commercialization efforts, and what could be done to overcome this issue.

In Chapter 4, I continue with AM as a case study and discuss how we can text-mine manufacturing

literature in order to characterize the manufacturing variability of this technology. I describe some

problems associated with this approach, and also provide some insights and results from my text-mining

efforts.

I provide a summary of the findings and conclusions in Chapter 5.

14
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Chapter 2

Manufacturing Variability

Overview

This chapter looks into manufacturing variability, its causes, why it is important, and suggestions for

how we should think about it. It begins with a brief overview of manufacturing variability as framed by

the field of process control, the discipline which is tasked with managing variability in manufacturing

processes. I then tie manufacturing variability to environmental impact and economic costs through

the concept of overdesign, which lies at the heart of most certification frameworks. Some examples are

given, with a particular emphasis on fiber composites which is a technology that has notoriously high

manufacturing variability.

This work is largely based on two documents written by myself as the primary author and with

substantial help from other authors [7], [8].

2.1 Properties as Random Variables

2.1.1 Overview of Process Control

No two fabricated parts are the same in manufacturing. Differences in the final properties of a manufac-

tured part arise due to variations in the environment, materials or the machine itself [3]. For example,

the temperature or humidity in a factory changes over the course of a day, which impacts the behavior

of an injection molding machine. Or consider that the flow paths of the molten plastic will be slightly

different each time plastic is injected into a cavity, which has some effect on the internal stresses, prop-

erties, and geometries of a part. Or potentially the materials used for the injection molding are not

completely homogeneous because the feedstock itself has experienced its own set of variations in the

environment, materials, or machines producing that feedstock. In this way, variations may propagate

through the supply chain. The distribution of the properties of interest will depend on the process,

the part being produced, the processing conditions and the standard operating procedures used by the

machine operators. Because of these differences, one must consider properties as distributions rather

than deterministic values.

The perspective of framing properties in a probabilistic way stems from work by Shewhart [9].

Shewhart grouped the sources of variation into two categories: common causes and assignable (or
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special) causes. Common causes refer to those causes that are expected and are inherent to the process.

In contrast, assignable causes are more like disturbances and typically arise from some external sources.

For example, when injection molding, hot liquid plastic is injected into a small cavity at an immense

pressure. This chaotic fluid will always flow a little different every time this action is performed due to

the nature of turbulent flow. As a result, the material and heat may spread a little differently in each

run, resulting in some differences between each part that is made. Here the turbulent fluid flow is an

example of a common cause, as it is inherent to the process.

As an example of an assignable cause, imagine that over the course of the day the injection

molding machine becomes a few degrees hotter because the room itself is warmer. As a result, the

plastic is injected at slightly higher temperatures, which causes the parts made in the morning to be

slightly different compared to the parts made in the afternoon. This variability is not inherent in the

process, and heating due to the environment is, therefore, an example of an assignable cause. Ideally,
this temperature drift can be identified and corrected.

A process that has only common causes is said to be in control, while those that also have

assignable causes is said to be out of control. Process control is the field that concerns itself with

knowing when a process is out of control, and then "re-centering" the process after removing or adjust-

ing for the assignable cause. Note that due to common causes, even if the process is in control there is

some variation [10], [11].

2.1.2 Strategies for Dealing with Manufacturing Variability

If every part that is manufactured is slightly different, it raises the question of how manufacturers deal

with this variability. For instance, if a hole is supposed to be 10 mm but ends up being 9 mm, then a

bolt may have issues fitting in the hole at a later production step. Typically the design of a part will

include a range of dimensions or properties that are acceptable, as defined by the Upper Specification

Limit (USL) and Lower Specification Limit (LSL). The goal is to ensure that all manufactured parts will

fall within these limits. Figure 2-1 illustrates this concept.

Note that this framework is binary; either the parts are within specification or they are not. This

approach makes sense for situations such as certifying the safety of a building; either the part is safe

or it is not. However, in many situations, the idea of a continuous loss function might be more realistic.

In this framework, any deviation from the target leads to customer dissatisfaction and is therefore

undesirable. An example of a continuous loss function might be the squared loss function. When

adopting this kind of framework, the goal is to set up the process to minimize this loss. This approach

was initially developed by Taguchi [12], and remains a popular framework in many process control

problems. However, in this work, I concentrate on standards set by certification bodies. These are

normally binary because the part either falls within the upper and lower bounds, or it does not.
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Figure 2-1: Diagram illustrating the Upper Specification Limit and Lower Specification Limit of a manufacturing
process.

There are two main strategies that can be adopted to ensure that parts fall between the upper

and lower specification limits: inspections and reducing the reject rate. Inspection requires the test-

ing of all the parts. The ones that fall outside of the upper and lower specification limits are rejected

or reworked. However, it is often impossible to inspect all desirable properties and there are signif-

icant costs associated both with inspection and with the possible rework or scrapping of out-of-spec

parts [13].

The second group of strategies revolves around reducing the probability of having a rejected

part to sufficiently low levels, such that it can be assumed that it is defect free. This idea is embodied

by Six Sigma, a set of tools used for process improvement. Six Sigma's name comes from the idea

that if we assume that the process is normally distributed, and that if the center of the process is six

standard deviations away from the USL and six standard deviations away from the LSL (meaning that

the USL and the LSL are twelve standard deviations apart), then the chance of error is 3.4 out of one

million [11]. This might be sufficiently low odds that we can assume no parts will fall out of spec. A

subset of parts is tested in order to verify that the distribution has not shifted and that it remains in

control. If the distribution is as expected, then we continue to assume that only a negligible number of

parts fall out of spec.

There are three ways to reduce the percentage of out of spec parts, as illustrated in Figure 2-2. The

first is to increase the range of the specification limits by redesigning the part or redesigning the product

in which the part will go. This approach makes a lot of sense in certain situations like in Liu et al. [14],

where the researchers redesigned a subassembly that holds magnets for high precision applications. The

redesign allows the magnets to be manufactured using traditional methods instead of high-precision

methods, thereby saving significant costs. However, this approach is not always applicable. In some

cases, redesign might not be possible or may be prohibitively expensive or complicated. This approach

is mainly used when dealing with dimensions, rather than mechanical properties.

The second way to reduce out-of-spec rates is to reduce process variability. The first step would
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Figure 2-2: Different strategies to reduce the out-of-spec rate. A) the default scenario, B) shifting the USL and
LSL, C) reducing the variance, D) shifting the distribution (overdesign).

be to remove all assignable causes, which should always be the aim. Reducing the common causes of

variation requires changes in the process itself. This occurs either by upgrading important parts of the

machines or by switching over to another process. This may therefore require more R&D spending than

the other approaches. However, with concerted effort, this can be highly effective. For instance, the

integrated chip industry was making features with sizes around ten micrometers in the 1970s and has

improved this to around ten nanometers today [15]. These developments were only possible because

the processes used by this industry became more and more precise and reproducible.

The third and final method to reduce out-of-spec rates is overdesign. This method can work well

if there is either an upper or a lower specification limit, instead of both. An example may be the ultimate

tensile strength of a beam. One might not care how high the ultimate tensile strength is, as long as it

meets some lower limit. By shifting the mean to be sufficiently far away from the lower specification

limit, it is possible to guarantee that only an acceptably small percentage of beams will fall below the

limit.

It is possible to use multiple strategies. For instance, it might be possible to overdesign, while

attempting to reduce the variability and perhaps also redesigning the part to reduce the lower specifi-

cation limit.
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2.1.3 Dominance of Overdesign

In many situations the strategy of overdesign is dominant. When dealing with structural parts such

as beams or columns in a building, or a chassis in a car, the strength of the parts is critical. In these

situations, it is not possible to reliably estimate properties like the ultimate tensile strength without

destroying the part. It might be possible to test the strength of a part up to its design constraint and to

approve it if it is able to withstand these forces, but this will likely deform and damage the part. It might

also be possible to measure proxies, such as porosity measurement with X-ray in metal parts, which is

typically correlated with tensile strength [16]. However, these proxies are imperfect and not always

sufficient. The remaining strategy is therefore to reduce the out-of-spec rate to some negligible level.

Because variability may be hard to reduce, the easiest approach here is to overdesign. It is probably for

this reason that we find the idea of overdesign to be at the heart of most certification frameworks such as

in [17] and fiber composites [18], [19]. The buffer for overdesign is typically decided by weighing the

risk level that decision makers are willing to tolerate against the cost of mitigating this risk. The policy

can either be set internally by a company or externally, through standards and certification frameworks.

Overdesign in certification frameworks can take on various forms. In some cases, a safety factor is added

(e.g., [18]), which follows the concept of overdesign directly and essentially sets a higher target for

mechanical requirements to account for variation in mechanical properties. For example, one might

say that instead of a steel bar needing to withstand 10 kN, it must withstand 13 kN (safety factor of

1.3) to account for variability in the strength. Assuming an average tensile strength of 400 MPa this

turns a bar with 25 mm2 of cross-sectional area into a bar of 32.5 mm2 .

In other cases, the preferred framework is that of design allowables [20]. Here the mechanical

properties that are allowed to be assumed during design depend on the distribution of these properties.

A material that has a very high spread in its properties will have lower allowable strength than a material

that has a tighter distribution but the same average strength. For example, instead of assuming a tensile

strength of 400 MPa for a steel bar, only a tensile strength of 300 MPa can be assumed. For our bar

that has to withstand 10kN, this would mean that instead of 25 mm2 of cross-sectional area, 32.5 mm 2

of area would be required. Ultimately these different approaches frame the same concept in different

terms.

2.2 Manufacturing Variability, Environmental Impact, and Cost

2.2.1 Overdesign, Material Material Consumption and Ecological Footprint

For any design constraint that varies with the amount of material used, it is possible to overdesign

by adding more of that material. This includes properties such as the stiffness, strength, and thermal

capacity of a part among many others. In reality, the effect of overdesign will be subtler and more
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Figure 2-3: Schematic linking manufacturing variability and environmental impact.

complex than simply scaling the thickness of all parts at the end of a project's design. Variability will be

taken into consideration from the onset of the project [20]. Significant testing will be conducted early

on during the design process to account for variability and to establish the properties that can be as-

sumed for the design. Alternatively, safety factors will be applied from the beginning of the project and

parts will be designed to meet the requirements of more conservative design specifications. Ultimately,
variability will lead to more material being used in the product.

Increased amounts of materials used in a part mean more embodied energy in that part. For

many products, a substantial proportion of the lifetime energy is associated with the embodied energy

in the materials [21], [22]. In addition, an increased weight of a final product due to more materials

can also influence the environmental impact of the use phase of that product. For example, the fuel

consumption of a vehicle heavily depends on the vehicle's weight.

The link between manufacturing variability and environmental impact can therefore be estab-

lished under a few conditions. A simple schematic is shown in Figure 2-3. If manufacturing variability

is high and the idea of safety factors is adopted, then overdesign will take place. Alternatively, the idea

of design allowables is adopted and the effective strength that can be assumed by designers is adjusted

based on the variability of the mechanical properties. In both cases, the result is overdesign which

implies that more material will likely be used thereby leading to higher environmental impact.

2.2.2 Examples

Concrete

Concrete has a very high CO 2 emissions footprint [23], is a critical construction material, and the

variance in the strength of concrete is notably high [24]. I will discuss variability in terms of the

coefficient of variation (CV), which is defined as the standard deviation divided by the average of a

distribution. A CV of 0.14 is rated to be 'fair' by industry standards [25].

In the compliance requirements of Section 26.12.3.1 in the standard developed by the American

Concrete Institute (ACI) [17] the ACI requires the average of three consecutive tests to exceed the

specified strength, with an allowable failure rate of one in a hundred tests. This can be translated into

a safety factor as defined in Equation 2-1.
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CV 0.14
SafetyFactor = zscore = 2.33 = 18.8 (2-1)

In other words, under these assumptions almost 19% additional concrete is required in order to over-

come issues with manufacturing variability.

In 2016 the total CO 2 attributed to concrete was around 1.45 Gt CO 2 [23]. Assuming that all

this concrete has a CV of 0.14 and that for all this concrete the above compliance requirements were

followed, we can extrapolate our calculations to suggest that around 0.27 Gt of CO 2 is being put into the

atmosphere every year to make up for the high variability in concrete. In reality, not all of the world's

concrete will follow this standard, and not all concrete has a coefficient of variation of 14%. However,

this figure presents itself as a reasonable estimate of the total opportunity that can be captured by

reductions in variability for concrete.

Integrated Circuits

Manufacturers of Integrated Circuits (IC) are highly familiar with variability in manufacturing pro-

cesses. There is clear motivation for this; most of the innovation in this industry is driven by the de-

sire to create increasingly smaller transistors which requires increasingly more accurate and precise

manufacturing operations. The trend has been powerful enough to shrink feature sizes from tens of

micrometers in the 1970s, to tens of nanometers in today's state of the art [15].

With billions of transistors per chip, each individual transistor must have high probability of

meeting specifications (high yield), otherwise too many chips may have too many defective transistors.

To ensure extremely high yield for each transistor, each feature is made larger (overdesigned) relative

to what current technologies may be able to produce on average.

IC manufacturers have to determine tolerable failure rates. This becomes a trade-off between

the size of each transistor, and therefore speed and power draw, and the yield of each transistor, which

manifests as the yield of the chips. Interestingly, the yield of chips has been falling as the transistors

have shrunk. Transitioning from 350 nanometers to 90 nanometers in feature size, the yield went from

around 90% to 50% for the highest performing products [26].

With current technologies around 14 nanometers, yield likely has dropped even further although

the exact numbers remain difficult to obtain. These statistics give an interesting insight into the IC

industry. The industry is willing to accept high levels of rejects just for the chance to build very small

transistors, and this risk tolerance seems to have shifted over time. It also highlights a further dimension

from a sustainability perspective. In this industry, there is a trade-off between yield and the amount of

material required per part. With 350-nanometer technology Intel produced 31 million transistors on a

chip with a die size of 242 mm2 [27] while with 90-nanometer technology Intel produced 125 million

transistors on 112 mm2 [28]. This is an 8.7-fold decrease in area per transistor. Assuming that the kind

of material used is comparable and the thickness remains the same, even if yield decreased from 90%
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to 50% materials will still be saved. However, there might be a point where yield may be so low that it

no longer leads to materials savings.

Nevertheless, process control in the IC industry should be seen as a success story. The field pays

close attention to process capabilities, and has very sophisticated statistical tools and design strategies

to continue progress [29]. This relentless push towards smaller transistors is a form of dematerialization

that has been enabled by advances in process control.

2.3 Case Study: Fiber Composites in Aerospace

2.3.1 Motivation

Carbon Fiber Reinforced Polymers (CFRP) is an interesting case study to investigate the impacts of

high manufacturing variability, and I go into depth here for several reasons. First, CFRP has amongst

the highest weight-reducing potential relative to other commercially available materials [30] and is

therefore of great interest to the aerospace industry. Because of the relatively high specific strength and

stiffness of a CFRP, aircraft manufacturers have increased their use of CFRP and its growth is expected

to continue over the next decade [31]. For example, the aviation industry recently launched aircraft

made of CFRP at a significant portion of materials such as 50% and 52% in the Boeing 787 [32] and

in the Airbus A350 [31], respectively.

Second, while the weight reduction capability of this material is incredibly promising, it comes

at a high cost compared to other approaches, with some statistics putting it at 570 % higher than the

cost of steel [33]. While these costs are dropping, the price of CFRP remains one of the main reasons

why automotive and aerospace industries are not using the material more [34]. Potential reductions in

the costs of this technology would be impactful.

Third, the manufacturing variability of CFRP is notoriously high [35] when compared to other

competing materials such as aluminum, magnesium, or high-strength steel. The complex structure

and manufacturing process for CFRP introduces many sources of variability [36]. Potter et al. iden-

tified at least 60 sources of variability and 130 sources of defects for the production of fiber compos-

ites [37].

Finally, CFRP is energy intensive to fabricate [38]. While research is ongoing, thermoset fiber

composites still have no good end-of-life strategies [39]. Reducing the amount of CFRP required could

therefore prevent substantial environmental degradation.

This case study explores the role of manufacturing variation of CFRP components within aircrafts.

I analyze how the variation in manufacturing an aircraft part influences production cost and weight

and also consider life-cycle energy and GHG emission implications. Through this case study, I suggest
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that variations in the product quality must be managed to achieve weight reduction, and to improve

environmental performance.

2.3.2 Background of fiber composites

Interest in lightweight materials has been growing and the market size for lightweight materials ex-

ceeded 100 billion US dollars in 2016 [40]. While many industries can benefit from advanced lightweight

materials, the largest demand is in the transportation sector, including the aviation and automotive

industries. Here I focus on aviation. Volatile fuel prices and significant CO2 emissions are driving

the aviation industry to reduce vehicle weight [41] and enhance efficiency. The aviation industry is

amongst the largest consumers of global transport fuel use and was responsible for 2.5% of global

energy-related CO 2 emissions in 2013 [42] and 9% of global transportation greenhouse gas (GHG)

emissions in 2010 [43]. Lightweight materials offer weight reduction and therefore fuel savings, but at

higher cost than conventional structural materials. Thus, one objective of aircraft manufacturers is to

achieve the highest structural strength per weight at minimum cost. While GHG emissions from the avi-

ation sector are expected to roughly double in the next decade, the highest rate among transportation

modes [43], the demand for fuel-efficient aircrafts is also strong [44]. The aviation industry has been

utilizing lightweight materials and the share of lightweight materials is already almost 80% [33].

Although the decisions around designing a lightweight part for aerospace applications are made

based on various constraints such as cost, manufacturability, etc., one hard limit is the strength require-

ment in structural components. A complicating factor is that there is uncertainty regarding both the

strength that is required (i.e., what is the worst-case scenario that this plane will encounter?) as well

as uncertainty regarding how strong a manufactured component is (i.e., how much force is required

to break a specific part?). There are rules in place that adjust for both of these sources of uncertain-

ties. For example, there is a standard safety factor of 1.5 that is applied to all aircraft designs. This

safety factor accounts for inadvertent in-service loads that exceed the design limit, and does not ac-

count for variations in mechanical properties. Variations in mechanical properties are dealt with under

different regulations as can be seen in the Code of Federal Regulations (C.F.R) 23.303 [45] and C.F.R

23.613 [46], and is discussed in a separate NASA document [47].

Setting uncertainty around strength design aside, I focus on the uncertainty of mechanical prop-

erties of fabricated parts. To overcome issues surrounding variations in mechanical properties, regula-

tions like the Airworthiness standards from the Code of Federal Regulations will demand properties to

be set on a statistical basis. For example, the properties that can be assumed must be set such that some

majority (e.g., 95%) of all parts will fall above it [46]. In practice, this can be thought of as another

safety factor.
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If a part could be produced without any variability in material properties, then the factor of safety

associated with the manufacturing could be one. However, as I argued, no manufactured product is

exactly the same as any other, hence, neither is its performance. To ensure that products meet the

required strength, the allowable strength must consider these variations, resulting in a safety factor

higher than one. From this perspective, the safety factor is a measure of how much 'overdesign' is

required to guarantee reliability. The US aerospace industry relies heavily on the Military Handbook

17 or MIL-HDBK-17[19] to specify how these values should be established.

2.3.3 Methodology

Overview

In order to investigate the effects of variability, I built a process based cost model (PBCM) [48] for

a part made of CFRP for aerospace applications. The model coarsely changes the design of the part

depending on the variability of the strength of the manufactured part. Strength is intended to be a

generic representation of mechanical properties that scale with the weight of the part.

The manufacturing variability is set as an input to the model. This variability is measured on the

strength as I define above, and because strength is an abstracted concept in our model, the variability

is too. I frame manufacturing variability as variability on any property that scales roughly linearly with

the amount of material, that comes as a result of the manufacturing process.

There are different ways to connect variability to overdesign. In this model, I adopt a standard

as described in ASTM F3114-15 where the coefficient of variation is directly related to the test factor

or the degree of overdesign required [18], as this provides a clean and intuitive mapping between

variation and safety factor. This standard is replicated in Table 2-1. This safety factor determines how

design (specifically the thickness) of the part should be adjusted to meet the required strength, which

ultimately means that in our model the weight varies linearly with the degree of overdesign.

The PBCM models three process steps in manufacturing a CFRP part: prepregging, layup, and

curing, which are each described below. The architecture of the whole model is shown in Figure 2-4

along with some key assumptions for input parameters. The outputs of the model are the cost of the

part and the energy required to make a part.

Prepregging

A CFRP part consists of two components: carbon fibers, which act as the reinforcement element and

provide the strength and stiffness of the part, and a resin matrix which provides the shape, some

protection from handling, and forces the individual carbon fibers to engage together. In aerospace,

prepregs (pre-impregnated) is the most popular approach to combine fiber and resin among various

technologies. Here the fibers are arranged into aligned plies (unidirectional, or UD prepreg) or woven

into mats, impregnated with resin, and are partially cured as sub-mm-scale sheets or plies. These plies
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ASTM F3114-15
Coefficient I
of Variation

0.05
0.06
0.07
0.08
0.09
0.10
0.12
0.14
0.15
0.20

Overdesign Factor

1
1.03
1.06
1.1

1.12
1.15
1.22
1.3

1.33
1.55

Table 2-1: ASTM F3114-15 standard which translates manufacturing variability into an overdesign factor [18].

Volume Fraction: 0.6
CF Cost: 100$/kg

CF embodied energy: 400MJ/kg
Sub-steps: Prepregging

Based on study conducted
at Northrop

Sub-steps: preparing mold,
cutting sheets, layup,

vacuum bagging

Autoclave is assumed to be
shared with 80% utilization rate
Sub-steps: Preparing autoclave,

heating cycle, trimming

MateriaI

Uncured Part

Prepreg
Base part

dimensions Variability

Adjusted ASTM
dimensions F3114-15

Energy and Cost
Predic t ions

Figure 2-4: Process based cost model schematic.
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are used during layup of the final composite laminate part.

In the model, prepregging is the first step and turns carbon fiber and resin into the raw material

used in layup. I assume unidirectional prepregs, and very roughly base our model's prepreg on typical

aerospace grade prepregs such as the Hexcel AS4/8552 UD CFRP. However, I allow some attributes

of this material to deviate during analysis. Mainly, an important parameter in this step is the volume

fraction, which is a measure of how much of the total volume of the prepreg is occupied by carbon

fiber as opposed to resin. Higher volume fractions are typically preferred as long as the fibers are fully

impregnated with resin.

I assume a volume fraction of 0.6 in our model unless stated otherwise. The other important

assumptions are the price of carbon fiber (100 $/kg [49]) and the price of the epoxy resin (10 $/kg). I

assume that the embodied energy of carbon fiber and epoxy resin is 400 MJ/kg and 132 MJ/kg [38],

respectively. Prepreg processing is assumed to require 40 MJ/kg [38]. Finally, I assume that the ma-

chine used to make the prepreg costs $1,000,000, has a lifetime of 15 years and a throughput of

110 kg/hour [50].

Layup

There are multiple ways to process prepregs, but in many cases, manual layup remains popular [34].

In my model I make use of a study on manual layups conducted at Northrop [51] and funded by the

USAF. While the study is dated, it is meticulous and the procedures of manual layups have not changed

substantially. This study presents equations which estimate the labor-hours required for each of the

various steps associated with manual layup. This includes steps like cleaning the mold, coating the

mold with release agent, and applying the vacuum bag, amongst many others. Although there are

some consumables used in this process, these are a small part of the total cost in comparison to the

labor costs.

Curing

Curing of most aerospace CFRP is done in an autoclave, which has high capital costs. Here I make

use of a Ph.D. thesis which collected information on costs and specifications of an autoclave [52]. The

costs are adjusted for inflation, and a linear regression is conducted with the width, diameter, and

volume as input parameters. This allows an estimate for an autoclave dependent on the part size. For

a 10m x 3m part, this results in a cost of around $3 million. Curing cycles are estimated based on the

recommended heating cycles as suggested by some material suppliers. During curing, I assume that

the energy required scales with the size of the autoclave, using a benchmark of 27 kW for a 0.75m3

autoclave as per [53]. It is then assumed that the autoclave will run on 60% of maximum power during

the warmup cycle and at 20% of maximum power during the hold phase of curing, similar to what is

assumed by Witik et al. [53].

In my model, the ramp-up time in the autoclave is sufficiently slow (90 minutes), and the parts

are sufficiently thin, that heat-flow through the part does not cause a bottleneck. This is verified using
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a 1-Dimensional lumped parameter model. In this model, I assume forced convection in the autoclave,

with a convection heat transfer coefficient of 100 W/m2 [54]. The part is modeled as 10 nodes, with

two additional nodes representing a 1 cm thick vacuum bag. The thermal conductivity of the vacuum

bag and composite is assumed to be 0.4 W/m K and 0.8 W/m K [55], respectively. The autoclave is

assumed to be stable at 180 'C throughout this process. Varying the thickness of our part up to 1 cm

allowed the entire part to heat up to within 1 % of the target temperature within 15 minutes, which is

well within the 90-minute ramp-up timeframe. In other words, for the range of thicknesses I consider,

the cycle time is constant.

2.3.4 Monte Carlo Simulation

As expected, the outputs of the model vary dramatically depending on the input values. Almost all of the

inputs have uncertainty associated with them or will be expected to change depending on the design

or other circumstances. A single scenario therefore cannot generalize to give a robust representation

of the cost or energy distribution. I use Monte Carlo simulations to address this limitation.

Table 2-2 below provides the range of the values used as input variables to the Monte Carlo

simulation. All variables follow a uniform distribution, and the minimum and maximum that defines the

uniform distribution are provided in the table. For specific and deterministic scenarios, I use the values

provided in the default column. The coefficient of variation (CV) is defined as the standard deviation

of a distribution divided by its mean. This is intended to be a normalized measure of manufacturing

uncertainty in this study.

For some of these variables, there are strong arguments why they should not be independent.

For example, the production volume of very large parts tends to be much lower than that of smaller

parts, because every aircraft might only need a handful of these large parts but many small parts. In

addition, the trim ratio of small parts will tend to be significantly higher than that of larger parts, due

to the ratio of surface area and circumference. To capture these trends I also enforce correlations as

defined by the correlation matrix in Table 2-3.

2.3.5 Modeling Fuel Consumption

The effects of lightweighting on the fuel consumption of cars has been studied in some detail [56], [57].

For aircrafts these models are more difficult to come by While airline operators pay close attention to

fuel consumption, and therefore have likely developed their own sophisticated internal models, they

have not made their findings publicly available.

To estimate the fuel saving as a consequence of lightweighting, I use the study by Helms and

Lambrecht, who assumed that for short-distance planes 100 kg leads to between 10 TJ to 30 TJ of fuel
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Variable Minimum Maximum Default
Part length (m) 0.5 25 5
Part width (m) 0.5 5 3

Part thickness (m) 0.001 0.01 0.005
Coefficient of variation 0.05 0.18 0.14

Production volume (units/year) 20 4,000 500
Volume fraction 0.5 0.65 0.6

Carbon fiber price ($/kg) 80 120 100
Resin price ($/kg) 5 15 10
Cost of direct labor

($/person-hr.)
Cost of indirect labor

($/person-hr.)
Prepreg yield (%) 85 99 95
Layup yield (%) 85 99 95
Curing yield (%) 85 99 95
Trim yield (%) 70 95 80

Table 2-2: List of the parameters used for the inputs of a Monte Carlo simulation. All
to be uniform over their range. Default parameters are as shown in the final column.

distributions are assumed

Production Volume Part Length Part Width Trim Ratio
Production Volume 1 -0.75 0 0

Part Length -0.75 1 0 -0.54
Part Width 0 0 1 -0.54
Trim Ratio 0 -0.54 -0.54 1

Table 2-3: Correlation matrix of the Monte Carlo simulation.
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savings over a commercial plane's 30-year life [58]. These authors base this estimate on correspondence

with Luftsansa.

In order to corroborate the estimate by this study, I pulled in data from other studies. In an article

in Composites World [59], some estimates are made on a Mitsubishi Regional Jet. Here it is proposed

that if 3200 lb. of weight savings are observed, it would lead to fuel savings of 42,700 gallons. This

works out to around 112 liters of fuel/kg saved/year. Over 30 years, and at 43MJ/kg of kerosene, this

amounts to around 0.12 TJ/kg and therefore corroborates the estimates used by Helms and Lambrecht

at between 0.1 and 0.3 TJ/kg. In this model, I set the fuel savings at 0.2 TJ/kg and provide the results

together with the upper and lower bounds.

I model the total fuel consumption change in a Boeing 787-9 and assume that the plane's oper-

ating empty weight is 128,850 kg [60]. I then assume that 10% of the plane's operating empty weight

is made out of composite and has opportunities to reduce variability. This is a conservative estimate,

as around half of the plane's structural weight is made out of composite [61].

I further assume that airplane fuel costs 5 USD/gallon (1.32 USD/liter) [62]. To calculate net

present value (NPV) calculations, a 30-year lifetime and 9% annual return rate are assumed. Finally, I

assume there are 9.57 kg CO2 per gallon of jet fuel [63].

2.3.6 Results: Production Cost and Energy

Typical costs to manufacture CFRP parts calculated by the model are around 230-280 USD/kg, which

is roughly what one would expect for an aerospace part. One market report [49] puts the price of

carbon fiber composite parts at 310 USD/kg for aerospace grade parts. Adding a markup of around

15%, which is reasonable for a Tier 2 aerospace company [64], and considering that some costs like

inventory and transportation costs are not part of our model, my estimate falls in line with what is

found in the industry.

The specific breakdown between material, capital, labor, and manufacturing energy costs will

depend on the inputs to the model. In Figure 2-5, I show three different cases, whose inputs are

defined in Table 2-4. Materials account for the majority of total costs in all three cases. This is due to

the high cost of aerospace-grade carbon fiber. Capital and labor also account for a significant proportion

of total costs. Energy costs are relatively small in comparison. The only difference between Case 1 and

Case 2 is that Case 1 has a higher manufacturing variability. As a result, the required safety factor and

hence the thickness of the part in Case 1 is higher, requiring more material to make, and higher labor

costs to lay down the additional layers. Case 3 has modest changes across most of its parameters and

illustrates that small changes in the part can lead to significant changes in the cost distribution. Most

notably, in Case 3 almost 60% of the total cost is attributed to materials; about 15-20 percentile points

higher than Cases 1 and 2.
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Case 1 Case 2 Case 3
Part Length (m) 5 5 9
Part Width (m) 5 5 2
Base Thickness (mm) 2 2 3
Coefficient of variation (%) 12 5 18
Effective thickness due to overdesign (mm) 2.4 2 4.6
Parts per year 500 500 100
Cost of CF ($/kg) 100 100 120

Table 2-4: Definitions of three different cases. All other inputs to the model are set to their default values.

case 1 case 2 case 3
400 100 100.0% 400

100.0%

300 300 300 100.0%

200 -44.. %200 58.9%
41.0% 39.0%

100 100 100 187% 21.2%

3.4%% 12%

Figure 2-5: Cost distribution between material, energy, capital and labor for three different cases. For Case 1
the part weighs 122.06 kg and costs $40,028 for 327.94 $/kg. Case 2 weighs 100.05 kg and costs $35,859 for
358.41 $/kg. Case 3 weighs 111.66 kg and costs $32,192 for 288.30 $/kg.

Production Costs

The physical size of a part plays the largest role on production costs as it directly impacts all areas of

the cost model. More material is required, a larger autoclave is needed, and layup requires more time.

Part thickness relates to total cost through the materials required and the added man-hours required

for the additional layups. In our model, the coefficient of variation impacts only the thickness of the

part, and as a result, the manufacturing uncertainty has a significant indirect effect on material and

labor requirements.

A more complete view of cost distributions can be generated by analyzing the results of the

Monte Carlo simulation as is defined in Table 2-2. These results also suggest that materials tend to

dominate the cost breakdown of carbon fiber parts across most scenarios. As can be seen in Figure 2-6

A, on average across all scenarios just over half of the total cost can be attributed to materials. The

second largest contributor to cost is labor at around 26%. This is predominantly due to the manpower

required during the layup process. Capital, driven predominantly by the high cost of autoclaves, comes

in at around 22 % of total costs, followed by electricity costs at around 4%.

These analyses show that reducing the material requirements will have a strong impact on the

final cost of the part, and that this assertion holds across a wide range of scenarios. Lowering the

variability, and hence the amount of material that needs to be used, should, therefore, have a substantial
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A 80 Relative Cost Breakdown B Production Cost Tornado Plot
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Figure 2-6: (A) Relative cost distribution of carbon fiber parts based on the Monte Carlo simulation. (B) Tornado
plot. Input variables were normalized to have a mean of zero and a standard deviation of one. This plot shows
the regression coefficient of the linear regression analysis on total part cost. The design of the part plays the most
significant role in total cost and the coefficient of variation is the most important driver after this.

impact on the final cost.

We can determine the importance of manufacturing variability in our model more directly In

order to ascertain the relative importance of the different variables we first create a level playing field

by taking the Monte-Carlo data and then normalizing each variable by first subtracting the mean and

then dividing by its standard deviation. We then conduct a linear regression on all the.normalized

variables and report the regression coefficients in Figure 2-6 B. Because we normalize the variables,

transformations like a change of units are accounted for. Instead, what becomes important is how

the variable is used in our process as well as the assumed distributions for each of the variables. For

instance, we could make the variable Direct Wage more important by allowing it to vary between 0

$/hr. to 10,000 $/hr. before normalizing. In other words, it is important that the distributions that we

assume in Table 2-2 are reasonable representations.

We find that the variables related to design have the most influence on part cost by a wide margin.

However, the design may be difficult to change and it is therefore worth considering the effects of other

cost drivers. The next biggest influencer is the manufacturing variance as represented by the coefficient

of variation variable. This suggests that there is a financial incentive to reduce the variability even

when just looking at the production cost. These incentives are significant, and we find that reducing

the variability from 14% to 9% reduces the production cost by 12.3% on average due to reduced labor

and material requirements.

Production Energy

Figure 2-7 A illustrates the distribution of total production energy across its constituents. The production

energy is assumed to be the combination of embodied energy from the resin and carbon fiber, the

prepregging processing energy and the curing energy. As we can see from this figure, the embodied
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A Relative Energy Breakdown B Production Energy Tornado Plot
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Figure 2-7: (A) Energy distribution between curing, embodied and prepregging. (B) Tornado plot of energy.
The design of the part plays the most significant role in total cost and the coefficient of variation is the most
important driver after this.

energy tends to dominate followed by the energy used during curing.

As changes in variance only manifest as changes of thickness, this also implies that the variance
does not impact the curing cycle. However, the thickness does play a role in the embodied energy. We
would therefore expect that the thickness of the part does not play as much as a role in the Tornado
plot as the part length and width do. As we can see in Figure 2-7 B this is the case. In addition, we
see once again that besides the part design, the coefficient of variation plays the most important role
in determining the production energy. Similar to production costs savings, we find that reducing the
coefficient of variation from 14% to 9% reduces the energy associated with materials and fabrication
by 11.8% on average.

We therefore establish a link between the manufacturing variability and the production cost and
production energy. However, we can go further by investigating the effects of manufacturing variability
on the use-phase.

2.3.7 Results: Fuel Savings

Reducing the variability does not just impact the production costs, but for airlines it also reduces fuel
consumption. Here I explore how the variability in a manufacturing process influences fuel consump-
tion in the use-phase of aircrafts. Figure 2-8 shows that compared to the base case where the coefficient

of variation is 14% (corresponding to a safety factor of 1.3), fuel saving can be realized or additional

fuel consumption is required due to changes in variability. Reducing the variation below 14% leads to
fuel savings and increasing the variation above 14% results in additional fuel consumption.

The opportunities are large, with net present values measured in millions of US dollars over a
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Fuel savings vs. Coefficient of Variation of Boeing 787
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Figure 2-8: Plot of the impact of changing coefficient of variation on fuel savings for a Boeing 787. The jagged
nature of this plot is due to the standard used for the model which is not continuous. See Table 2-1.

plane's lifetime and thousands of tons of potential fuel saved. Even at the lower bounds of the model,

reducing the coefficient of variation from 14% to 10% saves three million USD in fuel savings per Boeing

787.

The model estimates that a kilogram saved in a plane results in an NPV of $2,424 compared

with the price of producing a carbon fiber part, which is around 310 $/kg. Using the ASTM F3114-15

standard, reducing the coefficient of variation from 14% to 10% translates into safety factors of 1.3

to 1.15, respectively. For a kilogram part, this would imply weight savings of 0.12 kg, and the fuel

savings would amount to an NPV of $291. These calculations suggest that looking at the entire system

it might be financially viable to spend significantly more money during production as long as it leads to

reductions in manufacturing uncertainty

It can therefore be argued that there is a financial incentive to reduce the coefficient of variation

not just due to the lowered production cost but also due to the fuel savings, with a resulting reduction

in environmental impact.

2.3.8 Case Study Discussion

Ultimately, the use-phase dominates the total energy use in our case study. Removing a kilogram of

CFRP from an airplane's structure reduces the fuel consumption by around 0.2 TJ over the plane's

lifetime, while the forgone embodied energy in the CFRP is closer to 400 MJ. However, while the use-

phase may dominate energy requirements in this scenario, there are many other applications where

this is not the case and where saving weight for the sake of saving embodied energy would be highly

beneficial. The proposed framework is therefore not only applicable to vehicles, but also generalizes to

other products.
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In this study, we assume a direct relation between increased overdesign requirement and thick-

ness of CFRP part design. While this assumption is reasonable for the purposes of our model, in industry

this relation may be more complicated. In reality, there will be many different important properties

to be considered simultaneously. There is work being done on engineering models that attempt to op-

timize the design of a part depending on strength and load constraints (e.g., [65]). Research in this

area can provide a way to more realistically model the relationship between overdesign requirements

and part weight. Integrating these design models with our framework can potentially generate a more

realistic projection of how safety factors may relate to weight. However, we assert that our assump-

tion and results presented here are reasonable to demonstrate the relationship between variability and

overdesign.

Reducing manufacturing variability may require additional cost in order to better control the

manufacturing process and may currently be constrained by technological limitations. However, the

significant weight reduction potential as well as GHG emission reduction opportunity in a large com-

mercial plane promises that there are both an environmental and a financial incentive for firms to

reduce variability in manufacturing processes. These benefits seem to receive little attention in the

academic literature. Therefore, we suggest that it is worthy to get a better understanding of the na-

ture of variability in lightweight materials and their manufacturing processes. This calls for research

efforts to identify processes and industries where manufacturing variability plays a significant role and

provide guidelines in the earlier stage of technology's development.

2.4 Discussions

2.4.1 Reducing Variability

This framework suggests that the best outcome is to reduce manufacturing variability. If it were possible

to reduce variability, then many opportunities to save materials would open up. For example, we find

that around 19% of concrete is used to mitigate the effects of variance.

There are tools and methods that can be used to reduce variability So far these methods mainly

focus on business practices such as Six Sigma, and the results have been strong. For example, Gijo and

Scaria were able to improve yields from 94.86% to 99.48% using process control methods [4]. Another

study was able to reduce the standard deviation of a process from 2.17 to 1.69 [5].

There is also increasing interest in process-level solutions such as in-situ process monitoring in

AM [66]. Here the process parameters are adjusted in-process based off of readings taken during the

process, and might reasonably result in higher consistency Furthermore, the trend of increasingly more

precise fabrication techniques, like we see in integrated circuits, shows that there are ways to reduce

variability at least in some circumstances.
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While studies on variability for various materials and processes exist, there are few that attempt

to understand and highlight the root causes of variability on a process level. Having a better under-

standing of underlying sources of variability, and potential ways to alleviate them may prove an effective

way to reduce our material consumption.

2.4.2 Risk Neutrality

The framing outlined in this chapter implies that one strategy to reduce the magnitude of overdesign is

to accept a higher risk of failure or a higher risk of being out of spec. For example, one might argue that

instead of requiring less than 1% chance of failure, only 5% is required. With constant variance, this

would lower the need for overdesign thereby saving material. Setting risk tolerances is a complicated

task that is highly context dependent and I am not advocating that this is the correct strategy. However,

in some scenarios, it may be insightful to get a better understanding of how the tolerable rate of failure

is decided upon.

In the case of integrated circuits, it appears that manufacturers are accepting increasingly higher

odds that there will be a chip-disabling defect and that the chip will need to be discarded, as this

is the only way in which chips with very small transistors can be made at all. The scenario is very

different when talking about setting risk tolerances for a structure. Here the result of failure might be

catastrophic and should not be taken lightly.

2.4.3 Certification Processes

Throughout this work, a few interesting questions arise involving the way in which certification is

done. In this chapter, I put forward a simple representation of the certification process. Distributions

are established, safety factors are decided, designs are made, and parts are produced. In reality, this is

likely to be much more complicated.

Certification and quality control are tightly related to the design process, which is non-linear.

There are multiple departments within a company that will have an impact on the way some of these

decisions are made. In addition, outside of the company there will be multiple stakeholders who are

involved such as the material suppliers, the regulating bodies and the customers. Incentives between all

these players may not be perfectly aligned. Companies might also decide to set internal safety factors

which are more stringent than those imposed to them from a regulatory body. This may be because

companies are risk averse on particular issues and would like to avoid quality problems. Alternatively,

companies might prefer to set a more stringent safety factor early in the process to avoid needing to

redesign their entire system when a different safety factor is applied due to a change in design or

material later in the development process.
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More research should be conducted to attempt to answer the questions around how companies

actually interact with standards and certification procedures. These questions are especially interesting

as additive manufacturing continues to commercialize and CFRP becomes more prominent in automo-

tive applications.

2.4.4 Development of New Technologies

The link between variability and environmental impact warns us that the benefits of novel advanced

materials can be undermined if the manufacturing variation is not properly accounted for. If a new

technology promises 50% weight saving for the same strength compared to some conventional material,
but also requires a 30% overdesign factor to make up for manufacturing variability, then the net benefit

is closer to 15% instead of 50%.

The above example illustrates that decisions for a new process technology or material application

should be made not on the basis of average values, but rather on effective values - i.e., values that are

adjusted to account for manufacturing variability. Or in other words, we should view properties of new

materials as distributions rather than point estimates.

Due to the influence of manufacturing variability, it is necessary to investigate the reproducibility

of a new process or material early during development, rather than waiting to address these issues

when on the production floor. It is admittedly not necessarily easy to do this. Measuring variability

accurately requires a large number of samples as will be explored in Chapter 3. Furthermore, there

may be a reasonable expectation that the manufacturing variability might be reduced when working

with a bigger, stiffer and more precise machine than might be available during prototyping. Norms

need to be developed to standardize the measurement and reporting of the distributions. Regardless

of some of these issues, it appears that manufacturing variability plays an important role in material

and energy consumption, and researchers that want to make a real difference should acknowledge and

ideally address the questions surrounding manufacturing variability in the processes they study.

The results of this study also suggest that reducing variability can be an effective way to fur-

ther light-weighting efforts. Instead of needing to develop and understand a completely new material

system, significant weight savings can be achieved by reducing manufacturing variability in existing

materials and processes. This suggests more research may be needed in this area. We need better

understanding of sources of variability and methods to try and reduce this variability.
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2.5 Conclusion

In this chapter, I established a link between manufacturing variability and environmental impact through

overdesign. High manufacturing variability necessitates overdesign to ensure that the chance of a part's

properties falling below the needed design level is sufficiently low. This overdesign requires more ma-

terial, thereby, increasing not just the material consumption of the part, but also the weight. Weight

has strong relations with fuel consumption, making this effect particularly important for lightweighting

efforts in vehicles.

This connection between variability and environmental impacts implies that reducing variability

could be an important part of light-weighting efforts. In conjunction with materials that are stronger, we

could also develop technologies that reduce variability and thereby increase the effective strength.

Furthermore, the link between manufacturing variability and environmental impact should be

taken into account by researchers proposing new processes or materials. Certification and quality

assurance can play a significant role and greatly reduce the effective material properties that designers

can assume in their designs. Researchers should recognize that deterministic values will never be

realized and that a more realistic representation is that of a distribution and an associated risk-level

that decision makers are willing to tolerate. As a result, the effective performance of a part, which is

adjusted to account for the distribution's variance and the risk level, is more important than the average

performance.

Manufacturing variability therefore plays an important role for materials and processes in that

it establishes the effective performance of these technologies. In this way, initial predictions of new

technologies may be overoptimistic. In the following chapter, I go a step further by also looking at how

manufacturing variability, and our (lack of) knowledge of these distributions, impact the commercial-

ization process of specific technologies.
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Chapter 3

Variability and Commercialization

Overview

So far I have established that manufacturing variability has important implications for manufactur-

ing processes. High manufacturing variability can imply high overdesign requirements, which in turn

drives up cost and material usage, and reduces effective performance of a material. I took the exam-

ples of concrete, integrated circuits, and fiber composites and argued that in each of these cases the

manufacturing variability increases cost and environmental impact.

In the considered cases so far the assumption is that we know key characteristics of the man-

ufacturing variability. For example, we may know the form of the distribution and might even know

how changing certain processing parameters shifts distributions one way or another. In this chapter,
I consider examples where this is not the case. Characterizing manufacturing variability is difficult.

Understanding how a process works and how distributions in properties change under different sets of

processing conditions is even more difficult. Yet as I will discuss, manufacturers need a certain level of

understanding before a new process can become commercialized. As a result, if we cannot characterize

the manufacturing variability, the commercialization process becomes significantly impeded.

In this chapter, I first look at the issue of characterizing manufacturing variability, namely that it

requires a large amount of data to accurately estimate. I then argue that not knowing the distribution of

properties can impede or even halt the commercialization of new manufacturing technology. I explore

this idea by looking at a historic example, Fiber Reinforced Polymers (FRPs), where issues around

manufacturing variability were overcome through a concerted effort from industry and government.

I then compare FRPs to a modern example that also struggles with manufacturing variability: AM. I

close this section by arguing for a collaborative effort to better understand manufacturing variability

in AM.

3.1 Estimating Manufacturing Variability

3.1.1 Confidence Intervals for Expected Value and Variance

Imagine that we have a way to fabricate a steel bar, and we want to understand the distribution of the

tensile strength of this bar. As is typically done, we will assume that the tensile strength is normally
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distributed. The task is then to estimate the mean and variance of this distribution from a set of N

samples. I denote the true mean as p and the true variance as a 2 and both are unknown. Our estimates

will be denoted as P and &2 for the mean and variance, respectively.

As is well known, obtaining a reliable estimate of the expected value requires relatively fewer

samples than getting a comparably reliable estimate of the distribution's variance. In other words, as I

will show, it takes a large amount of data to establish the variance of a distribution accurately.

We will look at the Confidence Interval (CI) of the expected value and the variance. The CI is an

estimated range which is likely to contain the true parameter of a distribution, and is a standard way to

measure a parameter. The level of confidence of the CI sets the probability that the interval contains the

true value of the distribution's parameter. Equation 3-1 formalizes this relationship. Here 0 is the true

parameter, the interval is defined between [L,U], and 1 - a is defined as the level of confidence.

Prob(L 0 U) = 1 - a (3-1)

The idea is to estimate L and U for a given a, from a set of N samples that we draw from our true

distribution. In other words, we manufacture N bars and measure their tensile strengths. I denote the

tensile strength of bar i as xi, where X is the vector of all x1 .. .XN and the mean over all N samples is

i.

Confidence Intervals of the Expected Value

Because the variance of the distribution is unknown, we first estimate the variance by using the

sample variance as defined in Equation 3-2 [67].

N

S =X2 \ -2) (3-2)
i=1

The 100(1 - a)% CI of the true mean p is then as defined in Equation 3-3 [67]:

S S
X - ta/2,n-1- X + ta/2,n-1 (3-3)

where ta/2,n-1 is the value of the student t-distribution with N - 1 degrees of freedom such that

Prob(t > ta/2 ,n- 1 ) = a/2 [68].

If the variance of our distribution was known, then we could use the Central Limit Theorem

(CLT) to assume that i is normally distributed with variance - . but because we do not know a we

have to estimate it from our sample and have to use the student-t distribution to adjust for the added

uncertainty.
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Sample Value
x 1  29.11
X2 29.63
x3  40.32
x4  24.49
x5  29.80
X6 34.67
X7 25.14
x8  29.38
x9  27.96
x10  32.82

Table 3-1: 10 samples drawn from a normal distribution with mean 30 and standard deviation 4.2.

Now let us consider the CI of the variance.

Confidence Interval of the Variance

To get the CI of the distribution's variance, we instead have Equation 3-4 [68].

(N - 1)s 2  (N - 1)s 2

2 < < 2 (3-4)
Xa/2,N-1 1l-a/2,N-1

where XZ/2N1 is chosen such that Pr( _1 > X/2,N-i

Comparing convergence of CI of mean and variance

Let us assume that on average the steel bars break at 30 kN and that the coefficient of variation

is 0.14 and. This implies that p = 30 and that a = 30 - 0.14 = 4.2, or that a2 = 17.6. We set N = 10

and a = 0.05. Using a simulation of a normal distribution with the given parameters, we get the 10
samples as shown in Table 3-1. The resulting 95% confidence interval for the mean is [27.05, 33.61].

This is roughly 30 +/- 3, meaning that we are within roughly +/- 10% of the true estimate with 95%

confidence. The resulting 95% confidence interval for the variance is [10.62, 59.92]. This is roughly

17.6 -40/o/+240%. The confidence interval is extremely large for the variance; we cannot establish it

with high certainty.

In Expectation

We can repeat the above experiments in expectation for different levels of a and different sample

sizes N. I denote the lower bound and upper bounds for the estimate of the mean as Ln and Um

respectively. Then noting that Lm = Lrn(X; a, N), the expected value of the lower bound over all draws

is:
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E[Lm(X; a, N)] = E X- ta/ 2,n-1- S =sEL] ta/2,n-1 E[s] (3-5)
x x VN x NF X

where only the i and s terms are dependent on X and therefore the expectation is only applied

to these terms.

A complicating factor for Equation 3-3 is that s is a biased estimate of a meaning that E[s] # u.

However, a factor can be derived to correct for this unbiased estimate [69], [70]. At N = 2 this

correction factors is around 0.797, meaning that in expectation s is 1/0.797 times larger than a. This

correcting factor quickly becomes negligible and goes to 0.98 or closer to 1 when N > 15. However all

of this is accounted for in the t-statistic, and as a result we can use U as an estimate for s.

Also note that E[k] = p. We therefore find that:

x

And similarly for the upper bound:

E[Um(X; a, N)] = p + ta/2,n-1 (3-7)
xt NflN.

For the lower and upper bounds of the variance (L, and Uv, respectively), we can go through a

similar exercise. Noting that only s2 is dependent on X, and that E = U2 we find that:
x

E[L,(X; a, N)] (N - )a 2  (3-8)
x 2

Xa/2,N-1

and

E[U,(X; a, N)] (N - 1)U2  (3-9)
x 2

XI-a/2, N-1

Now using Equations 3-6 through 3-9 we can plot the confidence intervals over a range of confi-

dence levels, and a range of number of samples. The results are shown in Figure 3-1. In this figure, the

confidence intervals are normalized by subtracting the true parameter and then dividing by the true

parameter. For example, at a = 0.05, and N = 30, the E[U,] is calculated to be 7.254. Subtracting the

true value and dividing by the true value we get (7.254 - 4.2)/4.2 = 0.72 = 72%, which is the value

that is plotted.
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Figure 3-1: Expected Confidence Intervals for mean (left) and variance (right) when drawing from a normal
distribution with mean = 30, and variance = 17.64. To allow comparison the confidence intervals were normal-
ized by subtracting the true parameter and dividing by the true parameters (i.e., if the upper CI for mean was
33, then (33 - 30)/30 = 0.1 = 10% is plotted). As a result, the y-axis is measured in percent. The x-axis shows
the number of samples. In both cases increasing the number of samples makes the relative distribution tighter,
meaning that we get a more accurate estimate, but for the variance the convergence is much slower than for the
mean.

The CI for both the mean and the variance estimations tend toward the true value, which in

this figure is the horizontal line at 0. However, as is clear from the figure, estimates for the variance

require many more samples to get a tight bound. Ultimately this is due to the way the chi-squared and

t-squared distributions vary as N increases. Practically this shows that it is difficult to get an accurate

measure of variability for a given confidence level.

Note that due to the linear scaling of variance in Equations 3-8 and 3-9, the plots of variance

remain the same for every level of a2 that is set.

We therefore see that it requires a substantial number of data points to get an accurate bound on

the variance. Hundreds of data points are required to get within 10% of the true variance at a 95%

confidence level, while only a dozen or so are required to estimate the mean at around this accuracy.

From this point alone it can be imagined that trying to optimize the variability of a process might be

difficult.
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3.1.2 Difficulties in Characterizing Manufacturing Distributions and Commercializa-

tion Impediments

The previous section demonstrated that in order to be very accurate when measuring the variance of a

distribution, dozens if not hundreds of samples are required. This suggests that it is hard to optimize

the variability. If there are multiple parameters that can each be varied, and if it takes dozens of samples

at each permutation to get an accurate sense of variability, then it would take a lot of data to find the

processing conditions where the manufacturing variance is minimized. While this is true, it should be

noted that reducing manufacturing variability remains a feasible goal, as has been demonstrated in

various papers that do just this for various processes [71]-[73]. Nevertheless, due to the amount of

data required, minimizing variability appears to require substantially more effort than optimizing an

average.

Further complicating matters is the fact that multiple properties are typically important for a

product. Beyond the ultimate tensile strength of a steel bar, we might also care about the stiffness,

yield strength, hardness, corrosion resistance and toughness. This adds further dimensionality to a

problem that has to be overcome.

For a new manufacturing process, the community might take some time to figure out basic me-

chanics like how the mean shifts when various processing conditions are changed. Studies on the

variability might have a relatively lower priority. However, without an understanding of the variability

of a process it is impossible to know what the rejection rate is, or how much overdesign is required to

adhere to regulations. Furthermore, manufacturing process control requires one to know whether the

process is in control or not, which once again requires an understanding of what the distribution should

look like. Many standard and necessary procedures on the production floor are therefore impossible to

implement without an understanding of these manufacturing distributions. All this uncertainty brings

risks to manufacturers. Defective parts may lead the manufacturers to be held liable, or could tarnish

the reputation of a manufacturer as a high quality producer. As a result, manufacturers are wary of

processes they do not understand.

So if it takes a lot of data to characterize the manufacturing variability, how do new processes

displace conventional processes? In the next sections, I explore how this transition is indeed a problem,

but that there are some approaches that have worked in the past.
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3.2 Fiber Composites - a History

3.2.1 Overview

Fiber Composites or Fiber Reinforced Polymers (FRP) are discussed in Chapter 1 as a case study of the

impacts of manufacturing variability This field still struggles with high manufacturing variability, but

it has come a long way since it was first invented. Here I take a historic perspective on these composites

and discuss how this technology was able to overcome obstacles around manufacturing variability and

process control.

Time and cost are not the only barriers to implementing a new process on the production floor.

The literature on FRP indicates that a low level of confidence in the reproducibility was a major reason

why companies hesitated to adopt this new technology when it was first invented [74], [75]. The

industry had built up substantial know-how about existing and conventional technologies, which makes

shifting to a new technology comparatively risky. Composites were held back because of this confidence

barrier until a NASA-led program in the 1990s was instigated. This program had the aim to create a

shared database of material properties and important process parameters [76]. The program was

deemed successful in giving manufacturers more confidence in composites technology, and is credited

as one of the reasons why composites are relatively widespread in aerospace - a notoriously conservative

and risk-averse industry.

3.2.2 Early Promises of Composites

Early advocates of fiber composites promised savings of 50% of a structure's weight compared to using

an aluminum frame [76]. It is difficult to determine how much weight savings occurred in reality, but

estimates place it closer to 20% of the structure's total weight [61], [77]. This remains true despite

three decades of developments in the composites field.

Part of the shortcomings may be explained by the difficulties in manufacturing composites. The

FRP production process proved to be more difficult to control than anticipated [76], and these chal-

lenges were not considered in initial optimistic predictions. As a result, additional safety factors must

be applied when using composites [18]. These safety factors are in the range of 1.2 to 1.5. There

is no indication that this was foreseen by early composite advocates, but it severely undermines the

weight-saving potential.

It should be noted that FRPs are not considered a failure. A 20% reduction in weight is a signifi-

cant boon for an industry where fuel accounts for a substantial proportion of total costs. Furthermore,

there are other benefits like corrosion resistance, and part consolidation which continue to be attrac-

tive features for aerospace and other industries. The market for advanced composites grows at a steady
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pace - around 3-5% annually [78], [79] and the percentage of FRP in an aerospace structure continues

to rise. However, the lesson to draw from these developments is that the predicted weight savings of

50% were unrealistic to achieve, at least within the first few decades. Perhaps when isolated from other

factors it is possible to theoretically achieve 50% weight-savings for individual parts. However, once

the technology reaches the factory floor the results are more sobering.

3.2.3 NASA ACT and AGATE Programs

In 1989 NASA started the Advanced Composite Technology (ACT) program. The aim of the program

was to develop an understanding of composites to the point where they could become cost competitive

with metal structures in aerospace applications [80]. The program involved a collaboration between

industry, including Boeing, Lockheed-Martin, Northrop-Grumman, and McDonnell Douglas. In addi-

tion, research grants were given to universities to develop analytical models for resin flows and to do

mechanical tests on new materials. The program finished in the year 2000 [81].

The program was started in order to provide further boosts to the field of fiber composites. The

need for such a program was pointed out one or two years earlier in a report to NASA which claimed

that the commercialization of advanced FRP was "disappointingly slow" [75]. While composites parts

were already certified by the Federal Aviation Agency (FAA) and flown by various airlines, the steep

investments required to develop, test, and certify parts impeded rapid progress [82]. Manufacturers

were uncertain of the properties of the new materials in various loading conditions, which meant that

for each new part substantial empirical and analytical work had to be done. This drove up production

and design costs considerably

The ACT program sought to alleviate barriers around process control through a number of activ-

ities. The program developed new analytical tools to predict the mechanical properties of a composite

part, it developed best practices in design and production by fabricating and testing full-scale parts, and

it collected the results of all experiments in a single database which it shared with manufacturers [80],
[83], [84].

In order to create the database, it was recognized that standard testing procedures had to be

developed [76], [85]. For these purposes, NASA decided to use the Military Handbook on compos-

ites: MIL-HDBK 17 [86]. A standardized input form was used to collect and store data in the shared

database, and numerous quality checks were done to ensure that the results were reasonable. Further

details on the operations of the database are given in a NASA report called "Database of Mechanical

Properties of Textile Composites" [83].

The ACT program collected many data, but the impact was not fully felt until the Advanced

General Aviation Transports Experiments (AGATE) program was founded in 1995. The AGATE program

attempted to boost aviation innovation by shortening the time to develop small aircrafts. Along the way,
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AGATE developed a methodology for qualifying materials called the AGATE methodology [87]. Instead

of requiring part manufacturers to individually qualify each material and part, material suppliers were

required to do a large proportion of the certification. In this framework, the suppliers need to provide

process parameters alongside any material that they supply. If part manufacturers could establish

"equivalency" with previously tested parts, and the manufacturers adhered to the supplier's process

parameters, then only a few additional tests would need to be conducted in order to gain certification.

This should aid in bringing the field towards industry-wide specification, instead of relying on company

specific specifications. Full details of the procedures can be found in a published report [88]. The

AGATE methodology would not have been possible without the data and knowledge provided by the

ACT.

It is difficult to determine how much of an effect these programs had on the commercialization

potential of composites. However, the shared database seems to be looked at as an example of success

[89]. By providing data on properties and testing procedures, and by clearly assigning responsibili-

ties to parts of the supply chain, the resources required to develop and understand the properties of

newly designed parts are significantly reduced. In this way, the programs served to reduce barriers to

commercialization.

3.2.4 Lessons Learned from FRP

It appears that a few individual companies were able to get their FRP products certified and imple-

mented in the 1980s. However, for the majority of companies and applications, the costs associated

with certifying a new FRP product were simply too great. This meant that the entire industry was being

held back due to issues with manufacturing variability. Only through concerted efforts did the entire

industry grow to become what it is today. This observation implies that in some situations it could be

worthwhile to share data and knowledge with competitors and suppliers as it moves the entire field

forward. However, for an individual company, this might seem like a bad deal. Manufacturing data

and knowledge are valuable assets, and simply sharing it with everyone seems like throwing away a

competitive advantage. It is not immediately clear how the ACT was able to incentivize everyone to

collaborate, but it proved to be effective.

Setting clear responsibilities for various stages of the certification process proved to be another

effective strategy. Making material suppliers responsible for the majority of the certification process

allowed for flexibility. If instead, the end products were to require full certification, it would take a

lot of data to verify the quality of a new product. Now through the framework of equivalency, small

companies looking to make FRP parts can use pre-approved materials.

There may therefore be some interesting lessons that can be drawn from fairly recent history. In

the next section, I argue that some of these lessons could be applied to a contemporary example.
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3.3 Commercialization Problem - AM

3.3.1 Similarities Between AM and FRP

Additive Manufacturing (AM) is being hailed as a technology which will disrupt many industries. By

building up a part layer by layer, AM enables the fabrication of parts which were previously very difficult

if not impossible to make. In theory, this removes a significant constraint when designing parts, and

parts can, in turn, be designed to be much closer to their theoretical optimum instead of being held

back by production limitations [90]. Furthermore, the flexibility of this production process allows mass-

customization (e.g., see [91]). Advocates of AM boast of the technology's ability to save material and

energy [92], to save cost and time [93], and lead to a new 'paradigm' in production [94]. However,

despite its many benefits, and while AM has gained increasing interest since it was first invented in the

1980s, it has not yet gained widespread industrial use.

I will show that AM is currently in a similar position as FRPs were when the ACT began. AM has

found some industrial applications and a few AM parts have been certified for use by either the FAA or

the Federal Food and Drug Agency (FDA). However, there is still a low level of confidence by industry

and not many functional parts are in use at this time. The uncertainty in the production process is

impeding development efforts. In this section, I consider the status of AM in two industries: aerospace

and medical devices. I will argue that the low level of confidence is a key barrier to widespread com-

mercialization in both of these industries, and that a collaborative database approach, similar to what

occurred with FRP, might serve to remove this barrier

3.3.2 AM Regulation by the FAA

In September 2015, the FAA and the Air Force Research Laboratory hosted a three-day workshop on AM

in the aerospace industry. It was attended by NASA, the military, the National Institute of Standards and

Technology, and by industry. The objective of the event was to discuss the status of AM in aerospace,

with particular emphasis on qualification and certification processes. A summary report of the workshop

was made available online [95].

A recurring theme of the event was the issue of process control. From the workshop's summary

report: "The potential exists for a high degree of manufacturing variation because of the process, ma-

chines, suppliers, and input stock."[95]. In addition, participants agreed that the feedstock, specific

AM process, and the resultant parts are "highly integrated and interdependent" and that this creates

problems for the certification process. If all the parameters are indeed highly interdependent, it will be

difficult to isolate different steps and to certify each step individually. Considering the entire process

as a whole for certification makes for an inflexible system, as it does not allow modularity if changes

need to be made. Standardization of testing and production parameters is ongoing, but is in early
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stages. The industry pointed out that these quality assurance issues are one of the main barriers to

commercialization. Current nondestructive tests (NDT) fall short of requirements, and little is known

about how the FAA will handle AM certification, which makes pursuing AM risky.

On a few separate occasions, the summary report mentions parallels between AM and com-

posites, arguing that materials, processing conditions and the final part are highly related for both

technologies. In other words, the material properties are not fully determined until the part has been

fabricated. The report argues that this makes these technologies distinct from conventional processes

like machining.

A complicating matter in aerospace is that the main failure mode is fatigue cracking [96]. Testing

for fatigue is difficult as it takes a long time, and there are many inputs to the experiment (frequency,

load, load profile) which means that if companies are looking to share and compare their data easily,

they must use comparable parameters. This requires standardization. Furthermore, because it often

takes thousands to millions of cycles to show signs of fatigue, it requires a lot of flight-hours to prove

that a part is unlikely to fail via this mode.

The aerospace industry is therefore hitting a large barrier for implementing AM parts. Manu-

facturers need to be confident in their parts, but process control for AM is in early stages and tests

for quality are not yet standardized. It may be possible to develop a bespoke testing procedure for a

specific product and application, as demonstrated by the fact that AM parts have been certified and

are currently flying [97]. However, this approach requires high investments, and is not scalable to the

entire industry. A more standardized approach is required. This means that material qualification,
production, and testing procedures must be defined.

3.3.3 AM Regulation by the FDA

Another promising prospect for AM is the medical device industry. The complex shapes and the ability

to mass customize make AM an interesting technology in this area. AM has already found applications

in medical devices. In an interview with MDDI, a medical device industrial magazine, Steven Pollack,
Director of Office of Science and Engineering Laboratories at the FDA, said that at least 85 AM prod-

ucts have so far been approved by the FDA [98]. It should be noted that so far these devices have

been approved through the 510(k) processes, meaning that they are "substantially equivalent" to de-

vices which were already approved and manufactured through traditional means. However, there have

not yet been AM parts which have successfully passed the more stringent Premarket Approval. Being

limited to the 510(k) process is unsustainable in the longer term, because one benefit of AM is that

it can make geometries which are otherwise almost impossible to make. Ideally, we should therefore

be producing medical devices that are inequivalent to existing devices, due to the flexibility that AM

provides. Certifying these kinds of devices will require Premarket Approval, which in turn requires
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proof of safety.

Due to the lack of material qualification, and production and testing procedures, it is difficult to

adequately prove that parts are safely made and fit for medical applications. This industry therefore

faces similar problems as aerospace, and it is therefore worthwhile to examine some of the literature

on AM in medical devices.

The FDA held a workshop in 2014, where it invited members of industry and academia to discuss

some of the challenges of AM in medical devices and to allow stakeholders to express their thoughts.

The draft guidance was based on this workshop and came out 18 months later [99]. The purpose

of the draft summary was for the FDA to share some initial thoughts and to give other stakeholders

the opportunity to comment. This is therefore not a comprehensive regulatory document, but rather

a way for the FDA to test how industry would react to some regulatory approaches. The document

was updated about a year later [100], although the main messaging remained the same. One of the

key takeaways of the workshop was that process control is one of the main critical barriers to more

widespread AM medical devices.

The draft guidance mainly makes suggestions for parameters to consider when internally es-

tablishing an AM production procedure, but few specific settings or standards are proscribed. Some

parameters or machine inputs the document suggests to keep in mind include the power of the energy

delivery system (e.g., the laser), the build speed, build path, focal point or nozzle diameter, particle

size and distribution, chemical composition of the material, location of the build and orientation of

the part. This gives some insight into the kinds of parameters the FDA will be considering in the PMA

process; however, there is little guidance for actually establishing the correct settings. The guidance

notes that even if the same part were to be printed, using the same settings, on two printers of the same

brand and model, there could still be significant variation between printers. The FDA therefore seems

to imply that each printer would need to be individually validated, which may be a larger regulatory

burden than anticipated by industry.

The position of the FDA is that AM does not significantly differ from other manufacturing pro-

cesses and that the existing regulatory framework should be used to regulate AM devices. They state:

"It is anticipated that AM devices will generally follow the same regulatory requirements as the classifi-

cation and/or regulation to which a non-AM device of the same type is subject to" [99]. This indicates

that the FDA does not intend to create a separate framework, but instead might make some adjustments

to the current framework. However, the FDA also recognizes that there are aspects which makes AM

different from conventional processes. For example, the FDA points out that there is a "relative lack

of medical device history" for AM devices, which poses challenges for determining the optimal process

settings or the most appropriate testing methods. This sentiment was shared by industry.
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3.3.4 Environmental Impact of AM

Two environmental claims made about AM are that AM can save weight and save material. Weight

savings lead to reduced environmental impact by lowering fuel consumption in vehicles. These weight

savings are enabled by AM's ability to make complex parts, which removes many limitations that de-

signers would typically be working with. In addition, part consolidation could make it possible to make

much simpler parts which could also lead to weight savings. Some sources are claiming weight savings

on the order of 40-60% [92], [101]. However, it is not yet clear that these savings will actually be

realized. For example, it may turn out that due to the uncertainties in the manufacturing process a

higher safety factor is required, just like was the case for FRP. This could negate a large amount of the

weight-savings claimed by AM advocates.

Material savings could be expected with AM because of low buy-to-fly ratios. A buy-to-fly ratio

is the weight ratio between the input material and the final part. A high ratio implies that there is

significant scrap. In aerospace typical ratios are on the order of 10-20 [102], which suggests that the

vast majority of the material ends up as scrap. AM brings that number much closer to one. However, this

assumes that the un-used powder in the powder bed can be recycled. It has not yet been determined

whether this is reasonable. Some experiments suggest that recycling up to 40 times results in little

changes in properties [103]. Others suggest that after about four reuse times the powder becomes out

of spec [104]. As the qualifying process of AM by itself is not yet fully understood, it will require many

more robust studies before standardized procedures on powder reuse will emerge. It therefore may be

possible that a buy-to-fly ratio of one will be unrealistic due to limitations imposed by process control

requirements.

The discussions within the aerospace and the medical device industries appear to be running

in parallel. Both industries are looking for certainty in the fabrication process, better nondestructive

testing procedures, and clarity from their regulatory bodies. While the specifics do not have to be

identical, it might make sense to develop our understanding of AM under a common framework. Both

industries are essentially working on the same problem, and working together could prevent duplication

of efforts. Although aerospace and medical devices are two typical industries cited in the AM literature,

the same thinking could be applicable to other industries as well.

3.3.5 Similarities between AM and FRP

It appears that AM is going through a scenario that FRPs have already gone through. As a result, we

might be able to learn from FRPs and apply some lessons to AM. AM made its first debut in the late

1980s [105]. Composites, on the other hand, are more developed and have been around since the

1950s and 1960s [106]. Composites may therefore provide a snapshot into the future for AM.
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Some researchers have called for a top-down approach from the government to instill more struc-

ture in this industry [107]. There are individual cases where AM parts are being used as functional

components [108]. However, it requires significant investment to get to this point for an individual

company, and the process has to be restarted from the ground up for any new part or material. This

is exactly the point at which the ACT program started for FRPs, and perhaps it makes sense to have a

collaborative effort to understanding process variation and control in AM.

The AGATE methodology, where the majority of the regulatory burden is shifted to material

suppliers, might too be applicable for AM. Perhaps it makes sense for the material suppliers to suggest

operating conditions for specific materials, and for the companies that are doing the actual fabrication

of AM parts to just have to establish equivalency. However, at this point, not enough appears to be

known about the sources of variation in AM in order to back up this idea with robust evidence.

Finally, FRP might help us set more realistic expectations of the light-weighting potential for

AM. Due to the effects of overdesign as described in Chapter 1, many lightweighting benefits initially

promised by FRP advocates were nullified once the materials had to pass regulatory standards. For AM

it appears that this effect is not considered as much as perhaps it should be.

3.4 Conclusions

In Chapter 2, I demonstrated that high manufacturing variability has cost and environmental implica-

tions. In this chapter, I argue that not knowing the manufacturing variability also has implications as

it impedes the process from being commercialized at all. If the manufacturing variability for a given

process is not understood it becomes impossible to guarantee a level of quality, and, as a result, the

parts cannot be certified.

Manufacturing variability was shown to be a challenging statistic to estimate accurately because

a high number of samples are required to get a tight confidence interval on the estimate. Uncertainty

around the manufacturing distribution of FRP proved to be a difficult challenge for this technology in

the 1980s. The ACT program was instrumental to remove this barrier and was able to get industry and

regulatory bodies to collaborate and create a framework for certification that was not too cumbersome

for individual companies. The new approach to certification, where the majority of the regulatory

burden is placed with the material suppliers, together with all the knowledge that was shared as part

of the ACT, seems to have been effective in boosting the commercialization path of FRPs.

In this chapter, I also drew parallels between FRPs and AM, and argue that many of the issues

that FRP was facing regarding commercialization are also being faced by AM. Perhaps some of the

approaches that worked for FRP will also work for AM.

More data are required to better understand the manufacturing variability of the AM process,
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which would, in turn, remove obstacles for further commercialization. Gathering this data is expensive,
but many experiments have already been conducted on AM that might be able to help us understand

the manufacturing distributions. All this information has not yet been combined and instead exists in

various published documents. In the next chapter, I explore how we might be able to extract valuable

manufacturing information from academic papers on AM using text-mining techniques. These tech-

niques might be able to extract and structure data from the thousands of papers that researchers have

written on AM. In doing so I attempt to characterize the manufacturing variability of this innovative

technology.
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Chapter 4

Text Mining for Manufacturing Data

Overview

In the previous chapters, I argued that it is important to be able to characterize the manufacturing

variability of new process technology. First, this is because high manufacturing variability implies

higher environmental and economic costs, and in order to reduce these costs, we would want to reduce

manufacturing variability This means we will need to know what the manufacturing variability is in

the first place. Second, and probably more limiting, in order to manufacture a part with confidence

manufacturers must know what the error rate is, which requires the distribution of the process to be

known. In fact, in many situations, parts will not be approved for sale unless there is some kind of

statistical guarantee that the part meets the specifications. However, I also argued that it requires a lot

of data to accurately estimate the variability of a process and that companies are reluctant to share this

information.

In this chapter, I look at a source of data that might be able to help characterize the manufacturing

variability of Additive Manufacturing: published documents. The issue is that the data contained in

these documents are typically unstructured; they appear as text, disparate tables and figures, and

are not in a format that allow for easy analysis. However, through recent developments in machine

learning and text mining, it becomes possible to extract and structure this information. There remain

some challenges with this approach, which will be discussed, but even with these challenges valuable

information can be extracted.

I first give an overview of the text mining pipeline used for this project. I then discuss two

challenges for the pipeline. The first is that most text-mining techniques operate on a single sentence-

level, but I need to be able to link information across multiple sentences and tables. I propose and

implement some strategies to overcome this issue. Secondly, researchers are inconsistent with the

information they provide in published articles. This makes it hard to have a complete set of process

parameters and properties for analysis. Regardless of these issues, some information can be reliably

extracted and analyzed and these results will be discussed. I finish this chapter by outlining areas of

future work.
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4.1 Text Mining Pipeline

4.1.1 AM and Conventional Manufacturing Papers

There are many researchers who do experiments and publish their results in academic papers. These

papers therefore contain a wealth of information. For instance, one paper in the domain of AM [109]

includes the composition of the material tested, processing parameters like the laser power, laser spot

size, minimum offset height, laser wavelength, focal length, and scanning speed, as well mechanical

properties like the yield strength, ultimate tensile strength and elongation for multiple samples. This

is a representative example of these kinds of papers [110]-[114].

According to Engineering Village [115], around 3,000 papers on AM that include mechanical

properties are available. When filtering to only papers from publishers that allow MIT to mass-download

and text-mine their papers, the number is closer to 1,800 papers. Filtering this to the set of papers that

deal with metals instead of manufacturing with polymers, we have around 800 papers remaining, but

only 550 of these were actually about AM which is checked by searching the text for keywords such as

known AM processes. Note that every paper tends to have multiple experiments, and, as a result, these

550 papers represent a few thousand datapoints.

Data from these 550 papers can be supplemented by looking at conventional processes. Often

the same materials that are used in AM have been used in other fabrication methods like casting, hot

forging or rolling. It might be useful to compare the results against each other and see what knowledge

of conventional manufacturing carries over to AM. As a result, the pipeline is set up to also extract data

from these conventional manufacturing papers. When considering papers on conventional processing of

metals we find 104 papers using Engineering Village. Similar to the AM domain, these papers describe

composition, processing conditions, and mechanical properties (e.g., [65], [116]-[118]).

4.1.2 Architecture of Pipeline

In recent years, publishers such as Elsevier and Springer have created interfaces to their databases that

allows for mass downloads of their journals. We download these papers, preferably as HTMLs or XMLs,

using the APIs (Application Programming Interfaces) written by these publishers. The papers are then

processed with the text and tables being handled in parallel tracks. The extracted information is then

saved as a JSON file and stored in the database. An overview of the process is shown in Figure 4-1.

This pipeline is based on previous work done in the Olivetti Group [119], [120], and further

information on how the pipeline operates can be found there. The most important parts of the pipeline

include the Token Classifier and Info-Extractor. The Token Classifier tags each word in the paper as

a material, operation, condition, number, unit or some other label from our list of 27 labels. Info-
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Web Articles Article Processing Pipeline

Figure 4-1: Schematic of Text Mining Pipeline.

Extractor then uses these tags alongside the grammar of the sentence to connect information together.

For instance, a unit might be paired with a number, which might be paired with a condition. This

process is described in the following section.

4.1.3 Token Classifier and Info-Extractor

The setup of our Token Classifier and Info-Extractor is representative of many text-mining pipelines

across a wide range of domains such as nanotechnology [121], medicine [122], biology [123] and

chemistry [124].

The first step is labeling the important words in a given sentence. This is a Named Entity Recog-

nition (NER) problem [125]. These labels will differ depending on the domain the specific text-mining

pipeline is designed for. In this case, there are a set of 27 labels such as "operation" or "material" A full

list of labels can be found in the Appendix.

Next, every word in a sentence is represented as a vector through the use of word embeddings.

There are multiple ways to do this, and we utilize two approaches in our model: FastText [126] and

Word2Vec [127]. Both of these models were trained on around two million materials science and

manufacturing papers [120]. These embedded words are concatenated before being fed into the bi-

directional Gated Recurrent Unit (GRU) [128], which is a type of recurrent neural network architecture

that is specifically designed for sequences of data such as text. The schematic of the Token Classifier

is provided in Figure 4-2. Data were collected by Ph.D. students in Materials Science by manually

Database
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annotating around 200 papers on materials science as described in [119].

The steel alloy was heated to 560 0C for 2 hours

I I I I - S

FastText Embedding

- material material - operation - num unit - num unit

Figure 4-2: Architecture of the Token Classifier; a sequence-to-sequence prediction model. The embedding layer
uses both FastText embeddings and Word2Vec embeddings. The bi-directional GRU is a recurrent neural network
architecture typically used to process text.

The output of the Token Classifier is fed into the Info-Extractor algorithm. First, the sentence is

parsed using Spacy [129], [130] to create a dependency tree parse as shown in Figure 4-3. Then the

words in this sentence are linked to each other using the grammar tree. For instance, when we see that

"2" is labeled as a "number", we then move up the grammar dependency tree from "2" to the nearest

word that has been labeled as a "unit", which in this case is "hours". We then move further up the

dependency tree until we come across a word labeled as "operation", which in this case is "heated". We

can repeat the process for the temperature as well. Ultimately this allows us to know the temperature

and time that the heating operation was conducted at. Once no more linking can be done in the

sentence, the resulting relationships are captured in a structured dictionary which is saved as a JSON

file in the database.

Figure 4-4 provides a sanity check on the extraction process. Here the temperature distribution

is plotted when looking at various operations as extracted from papers on conventional manufacturing

of steel alloys. Some operations do not make sense at all temperatures. For instance, by definition

austenitizing requires the alloy to be heated above its critical temperature which for most steels is

around 720 'C. As can be seen in Figure 4-4, all datapoints fall above this critical temperature, giving

at least some indication that the extraction process is reasonably accurate.
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prep

pobj

det

The steel alloy was heated to 560 C for 2 hours.

Figure 4-3: Dependency tree of an example sentence.

heating -

temper-

anneal

austenitize

forge

sinter

Temp. Distribution for Steel Processes

I-

6 260 460 600 800 1000 1200 1400
Temperature (C)

Figure 4-4: Distributions of temperatures for various operations as extracted from papers on conventional pro-

cesses on steel alloys. This plot serves as a sanity check of the extraction process. Operations like "austenitizing"

are generic and spread across a wide range of temperatures. However, some operations like "sintering" require

the material to be heated beyond a certain critical threshold which for steel is around 720*C. The fact that we do

not see any data below this number indicates that the extraction process is reasonable.
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This kind of setup of a token classifier and info-extractor is quite representative of many text-

mining pipelines, although they often go by other names. However, this approach has a significant flaw

in that the information is only linked through grammar in an individual sentence. Because information

can be spread all over the document, and because we need to be careful how all this information is

linked, these current methods fall short. The following section discusses this challenge in more detail

and proposes some solutions.

4.2 Challenge I: Intra-Document Information Extraction

4.2.1 The Problem of Intra-Document Extraction

Linking information beyond a single sentence remains a hard problem [131]. Within a sentence, we

can link entities through grammar, but there is no obvious equivalent for cross-sentence relationships.

This is forcing researchers to take other approaches, such as cross-sentence dependency based neural

networks [132] or Graph LSTMs [133]. In some situations, it is possible to link information across sen-

tences through rule based approaches. For example, in both [119], [124] entity relations are extracted

across sentences by assuming that the sentences describe a process performed in chronological order.

So far, all of these models are limited in their application to just text and fail to link information across

an entire document including tables and figures.

In the domains that are being considered for this pipeline, there are often multiple experiments

described in a single document. For instance, one paper might attempt to measure the effects of laser

power on the ultimate tensile strength, and collect data with several different levels of laser power. The

goal in this scenario is to extract information on the composition and processing conditions, and to link

this to the mechanical properties while making sure that the information that is associated with one

experiment is not accidentally linked to another experiment. The various pieces of information can exist

far away from each other, such as in different parts of the main body of text, but also in captions, tables

or figures. For instance, in Belkassa et al. [134] five experiments are performed, and the compositions

of the materials are given in one table, the performance is given in another table, and the text contains

processing information. This is a standard setup for papers in this kind of domain [111], [114], [135].

The way human readers are able to differentiate various experiments is through sample names, the

name the authors of the document have given to each of the experiments. It appears then that for this

class of problems, cleanly identifying the sample names is key to relating information across various

parts of a document automatically

As an example, take the sentence: "Two low-density steel specimens were prepared for exper-

iments by cold-rolling and annealing at 800 C (T800) and 900 C (T900) for 2 min in an infrared

heating furnace." [136]. Later in this document, the authors also write: "The yield strength of T800
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is 718 MPa, which is much higher than the 561 MPa obtained for T900." Here the sample names are

T800 and T900, and knowing these sample names would allow us to link 800 'C to a yield strength of

718 MPa by linking each to T800.

The first task is therefore to predict a list of sample names from a document. However, even for

human, it is difficult to identify sample names when given a single sentence. Given the full document,
humans are able to identify the samples with relative ease, indicating that information from other

sentences aid in this classification problem. In this work, I find that developing a model that predicts

sample names from individual sentences results in too many false positives being included. Just like

for humans, more contextualized information is therefore needed. The issue is that parsing long-range

dependencies remains challenging for current NLP methods. In this section, I propose an approach that

can be used to extract the sample names from a paper. Using a unique dataset of 14,000 labeled papers,

or over one million sentences, I train a two stage model that is able to take in context from across the

entire document in order to predict the sample names contained in a paper.

4.2.2 Sample Names - Data Collection and Statistics

I build the dataset having access to a database of over two million academic articles on materials sci-

ence [119], and a reliable table parser [120]. In around 0.5% of cases, papers will have multiple tables

that each have a column "samples" or "specimens". This is a strong indicator that the entries in that

column are the sample names of the paper. This can be further tested by checking to see if these sample

names are contained in the text. Executing this procedure on our database results in a list of sample

names for almost 14,000 papers. Some examples are provided in Table 4-1. Table 4-2 provides some

summary statistics of this dataset. Manual verification of this dataset suggests that it is very clean, but

not perfect.

This automated data extraction process allows for the generation of datasets that is significantly

larger than typical annotated datasets used to train text-mining models normally found the literature.

This enables the use of data-hungry algorithms such as deep learning methods.

DOI Sample names
10.1016/j.jpowsour.2013.02.040 'F-MCs-800', 'F-MCs-900', 'F-MCs-600'

10. 1016/j.actbio.2011.02.040 'Ti64-CB', 'Ti64-FB', 'Ti64-CB-7', 'Ti64-FB-7', 'Ti64-P'
10.1016/j.matchemphys.2011.03.034 'Sample 3', 'Sample 4', 'Sample 2', 'Sample 1'

10.1016/j.tsf.2007.08.086 '0.6 mTorr', '0.2 mTorr', '0.4 mTorr'
10. 1016/j.jpowsour.2011.07.015 'MFC-5', 'MFC-3', 'MFC-1', 'MFC-O'
10.101 6/j.jmbbm.2015.06.008 'PLG4B', 'PLGC', 'PLGA', 'PT GH', 'PLGIB'

Table 4-1: Examples of sample names as extracted using the automated system.
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number of papers 13,827
number of sample names 59,892

number of unique sample names 43,152
avg sample names per paper (std) 4.3 (2.8)

% of sample names 1 token in length 88.0
% of sample names 2 tokens in length 8.6

Table 4-2: Summary statistics of dataset.

4.2.3 Base Model - tf-idf

Due to the uniqueness of sample names, a sample name appears infrequently in a corpus but frequently

within a paper. This is perhaps a structure that can be exploited. Term frequency - inverse document

frequency (tf-idf) score [137] was designed to give high values to just these kinds of situations.

The tf-idf score was initially designed to be a measure of how relevant a word is to describe a

document, which is a useful metric for information retrieval. The tf-idf is a combination of two metrics.

The first, tf or term frequency, is a ratio of the number of times a word appears in a document divided

by the length of the document. Or formally, the tf score of term t in document d is:

ft d
tft, d = f

|dl
(4-1)

where ft,d is the count of term t in document d and Idl is the number of words in document

d.

The second metric is the idf or inverse document frequency. This is a measure of how rare a term

is across all the documents in a corpus. The inverse document frequency of term t is typically defined

as:

N
idft = log -

dft
(4-2)

where N is the total number of documents in the corpus, and dft is the number of documents

that contain term t. Note that idft is high when a word shows up in only a few papers.

The tf-idf score of term t in document d is then the product of tf,d and idft :

tf-idft, d = tff, d . idft (4-3)

Because sample names are rare across documents, the idf is high. In addition, within a given
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Histogram of index of sample name in ranked tf-idf score
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Figure 4-5: Position of sample names when ordered by tf-idf scores

document the tf is also high. We would therefore expect that for sample names, the tf-idf score should

be relatively large.

I find that in many situations this is indeed the case. Many sample names show up in the top

50 highest tf-idf scores. However, there are also many sample names that only show up after the top

50 highest scoring tokens. Furthermore, many sample names do not show up at all because they are

2-grams or 3-grams and in this tf-idf setup we only consider 1-grams. A histogram is provided in

Figure 4-5.

Expanding to 2-grams does help to capture a large percentage of the sample names, but the

vocabulary grows immensely and the number of false positives increases substantially.

Regardless of some of these drawbacks, due to the simplicity and explainability of the algorithm

as well as the structure of the problem, we argue that the tf-idf score is a reasonable baseline and will

be used as such in our analysis.

4.2.4 Sample Name Classifier Model

Reasoning over every token in a document is computationally intractable if we need to draw in infor-

mation from other parts of a document for each token. The strategy is therefore to come up with a

list of candidate sample names, and to filter this list down by drawing in further information on each

candidate of the list. The model is set up in two stages as shown in Figure 4-6.

Model 1

Model 1 takes every sentence in a document and makes a binary prediction for each token as to whether
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it is a sample name or not. FastText [126] is used as the word embedding, which has been trained on our

database of materials science papers [120]. The embeddings are used as inputs to a bi-directional LSTM,
which is fed into a final time-distributed dense NN to make a prediction on each token. The predictions

are then used to create a list of candidates. Adjacent tokens that are each positively predicted are

assumed to be part of the same sample name and are combined for the rest of the pipeline. Model 1 is

tuned to have high recall at the cost of lower precision.

Precision is defined as the number of relevant cases predicted (true positives) divided by the total

predicted:

true positive

true positive + false positive

Recall is defined as the number of total relevant cases predicted divided by the number of relevant

cases that should be predicted:

recall = true positive
true positive + false negative

Good classifiers should have high recall and high precision, and in some cases the harmonic mean

of mean and precision is used to represent a holistic score of classification power. This is also referred

to as the F1 score:

F1 = 2 precision -recall (4-6)
precision + recall

With high recall and low precision, Model 1 aims to have anything that might be a sample name

included in the candidate list, but as a result it also captures a large number of false positives.

Model 2:

The list of candidates predicted by Model 1 is filtered down by Model 2, which is able to bring in contex-

tualized information from across the entire paper in order to determine whether a candidate is a sample

name or not. For each candidate, ten sentences containing that candidate are randomly selected, em-

bedded using FastText, and processed using an LSTM. The outputs of each of these LSTMs are added

together to provide a order-invariant cumulative signal. In addition, we find that sample names within

a paper tend to have a similar structure and that the Levenshtein [138], or edit-distance, between a

candidate and all the other candidates can be an indicator of whether a candidate is a sample name

or not, and we include this in our model. Sample names tend to have low edit-distances to all other

sample names, but high edit-distances to everything else. Finally, the candidate itself is embedded. The

signal from the LSTMs, the Levenshtein distance, and candidate embedding are concatenated and fed

into a dense neural network before passing through a sigmoid to make a final binary prediction.
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Model 2

L.evenshtein distance

Model 1 List of H6 .

0 0 0 1 0 0 Candidates This indicates that H600...

H ... t resemble that of H600. lass

For H600, the diagram...

his Emedd-n- ... volume of H6 0 ...

This indicates that H600 is almost ... --

...I compared to H600

For every candidate, find 10
sentences containing candidate.

Figure 4-6: Schematic of architectures. The model is split into two; Model 1 iterates over every sentence in a

document, and generates a list of candidate sample names. Model 2 filters the candidates and takes as input up

to 10 randomly selected sentences that contain the candidate.
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Figure 4-7: Precision-Recall plot of three different models.

4.2.5 Results: Sample Names Classifier

The best F1-score that can be achieved when only using the tf-idf score is only 0.144. This is increased

to 0.646 when using Model 1. Combining Model 1 and 2 results in a top Fl-score of 0.704, which is

the best performing model. The corresponding recall and precision scores are given in Table 4-3, and

the precision-recall curves are drawn in Figure 4-7.

4.2.6 Potential for Future Work

While this model is able to draw in information from various parts of a document, there is structure in

this problem that remains unexploited. For instance, as can be observed in Table 4-1, sample names

tend to be similar within a paper. While I tried to leverage this information by including the Levenshtein

distance to all candidates, there may be better ways to exploit this information.

/
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Model Best F1 Recall Precision

tf-idf 0.144 0.239 0.103
Model 1 0.646 0.689 0.609

Model 1+ 2 0.704 0.772 0.648

Table 4-3: Table of results of sample name classifiers.

As an example, we can take the list of candidates and for each candidate estimate the Levenshtein

distance to all other candidates. The sample names will tend to cluster together as is shown in Figure 4-

8 and Figure 4-9.

Furthermore, not just are the literal strings of sample names similar, but the usage of sample

names are also very similar within a paper. For instance, taking the example used earlier [136], the

text discusses the strains, phases, strengths and compositions of both "T800" and "T900". So we might

believe that "T800" could be a sample name when looking at it in isolation. However, we could convince

ourselves further by realizing that "T900" which is used in a very similar context as "T800" within this

paper, also looks like a sample name and that perhaps both are sample names.

All this kind of structure suggests that instead of predicting one sample name at a time we might

want to do something like a clustering analysis. Exploring ways to utilize this structure is a clear

candidate for future work.

4.2.7 Using Sample Names to Link Data

Given the sample names, linking information across various parts of a document becomes feasible. The

idea is to link every piece of information to a sample name, and if information cannot be linked to a

sample name then assume the information is applied to all samples in that paper. This is distinguished

as sample level data (which differs for different samples) and global level data (which is the same for

all samples in a paper). For instance in [113] there are two samples (Ti64 and PHI). Some settings

are different for the two samples, like the composition and scanning speeds, but both have the same

maximum laser power and apparatus. In this case, the maximum laser power and apparatus are global

level data, while composition and scanning speeds are sample level data.

Extracting information from tables and linking it to sample names is typically fairly straightfor-

ward, as in the majority of cases there is a column listing the sample name. In some cases, there is only

a single row in a table (e.g [110], [141]), in which case the information in the table becomes global

level data.
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PCA of edit distance: 10.1016/j.conbuildmat.2017.03.235
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Figure 4-8: Edit distance of candidates projected onto two dimensions from Zhang et al. [139]. In green are the

sample names, and in black are non-sample names. Note that the sample names form a fairly clean cluster on

the right hand side.
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Figure 4-9: Edit distance of candidates projected onto two dimensions from Liu et al. [140]. In green are the
sample names, and in black are non-sample names. The sample names seem to fall in two fairly clean clusters.

In some cases, extracting data from text is similarly straightforward. For instance in Rafi et al.,
[113] two separate sentences describe the heat treatments for the two samples : "Ti64 specimens were

heat treated at 650 'C for 4 hours in an argon filled furnace for stress relief and cooled down in the

furnace to room temperature. PH1 steel samples were heat treated to 482 *C for precipitation hardening

prior to tensile testing." In this case, the information could be extracted using conventional means, and

then attributed to the sample found in the sentence. However, frequently there are multiple sample

names in one sentence, which requires a different approach. For example, in the same paper [113]
we find: "For Ti64, the average particle size was 38 pm and for PHI powders the particle size was 43

pm."

To extract data from this sentence we might need to use something more sophisticated than a

per-sentence rule. A part of the dependency parse of this sentence is given in Figure 4-10. Note that

we can connect Ti64 to a particle size of 38 pm through the word "was". The same thing can be done

for the PHi sample name. This potentially suggests that information can be linked using the grammar.

However, this grammar dependency approach falls short in some cases, as can be seen in this quote
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prep

det cc.

For Ti64, the average particle size was 38 pm and

ADP PROPN DET ADJ NOUN NOUN VERB NUM ADP CCONJ

Figure 4-10: Part of the grammar dependency parse of a sentence from [113]

The yield strength of T800 is 718 MPa, which is much higher than the 561 MPa obtained for T900.

Figure 4-11: Dependency parse of a sentence from cite(lee)

from [136]: "The yield strength of T800 is 718 MPa, which is much higher than the 561 MPa obtained

for T900." The corresponding dependency parse is given in Figure 4-11. In this case, it might be possible

to link that the yield strength of T800 is 718 MPa, but while the dependency parse can be used to link

561 MPa to T900, it is hard to know that this refers to yield strength.

4.2.8 Conclusions on Intra-Document Extraction

Extracting usable data from academic papers requires the linking of information across multiple sen-

tences and tables in a document. Current text-mining techniques focus on extracting data from a sen-

tence at a time and are therefore not sufficient for the purpose of extracting manufacturing composition,

processing conditions, and properties.

In this section, I proposed that sample names are the key for humans to link information found

in a paper and argue that this is also the key for automated extraction of these kinds of papers. Sample

names are hard to identify from single sentences, and more contextualized information is required to

build a model with high classification capacity. The two stage model discussed in this section is able

to outperform sentence-level approaches. However, the performance has room for improvement and

future approaches might be able to better leverage further structure in the problem.

Given a full list of sample names it becomes feasible to link information across papers, but in

some cases, it is still hard to link information found in text. Tables and simple sentence structures can
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be parsed accurately, but the more complicated sentences often found in academic papers still prove

challenging, even with a perfect set of sample names for that paper.

4.3 Challenge II: Consistency

4.3.1 Lack of Documentation Standards

Besides the issue of whether it is possible to extract the relevant information from documents, there

is a question of whether all the right information is contained in the document in the first place. It

turns out that for many AM papers, the set of processing parameters described is incomplete. On some

level, this is reasonable, as not all process parameters are necessarily relevant for every experiment.

However, it makes replication of the experiment difficult, and also makes data analysis impossible

without imputation of some of these values.

4.3.2 Documentation of Process Parameters

When first investigating the information contained in AM papers, we developed a schematic for data

collection and manually collected information from 90 AM papers. This exercise helped to shape our

thinking around the information contained in these documents, and how the information could be

extracted. The template is available in Appendix C. Figure 4-12 shows the distribution of AM processes

and materials used in these papers. Note that selective laser melting (SLM) and selective laser sintering

(SLS) dominate the processes, and Ti6AI4V, a popular titanium alloy, dominates the dataset.

selective laser melting
selective laser sintering

electron beam melting
direct metal laser sintering (dmls)

direct laser sintering
directed energy deposition

selective electron beam melting*
direct energy deposition

laser metal deposition*
laser engineered net shaping*

fused deposition modeling
additive friction stir

stl.
sebm -

laser engineered net shaping (lens)
electron beam freeform ebf-

distribution of processes

0 50 100 150 200 250
Number of samples

distribution of materials
TI6AI4V
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Inconel 718
Inconel 625

AlSi1OMIg
CP-TI

Al-12SI

ELI grade Arcam Ti-6A1-4V
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AISilOMg powder
18 Ni Marage 300
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Figure 4-12: Distribution of the processes and materials used in the 90 papers that were manually extracted.

One observation that immediately stood out when collecting data is that researchers do not

frequently publish the same set of information even for the same process. For instance, one paper on

selective laser sintering (SLS) might include details on the laser power, scanning speed, and hatch
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material
particle size

layer thickness
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Figure 4-13: Bar plot showing what % of papers on selective laser sintering or selective laser melting include
information on various parameters and properties.

spacing, while another using the same process talks about beam diameter and particle size. In reality,

all of these parameters exist in both cases. Both researchers had to make a decision on what laser power

to use, but not all researchers publish this information.

Figure 4-13 illustrates how significant this problem is. Here in blue is the percent of manually

extracted papers on selective laser sintering or selective laser melting that contains the various pieces of

information shown on the y-axis. In red is the same but on the full set of papers, automatically extracted

using a dictionary approach (see Appendix B). The manually extracted data is very accurate, but the

automated data is based on a larger number of papers. Both approaches tell the same story; papers do

not tend to have all the import parameters in a process. For instance, I found that particle size, which

is amongst the most discussed properties, is only mentioned in around 50%-70% of papers.

As a result of this inconsistency, there are only a few datapoints that have all the parameters

that we might care about. A model that predicts the yield strength based on the material, particle

size, layer thickness, and laser power only has a handful of datapoints with all those features. In order

to conduct any statistical analysis, it is therefore necessary to do data imputation. There are various

approaches to doing this. However, all approaches come at a cost of additional uncertainty and noise,

especially considering that over 50% of the values would need to be imputed to make the above dataset

complete.

I
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4.3.3 Standardizing Documentation

As discussed in Chapter 3, a big part of the ACT program was standardizing tests and procedures so

that data could more easily be shared between various parties. This included standardizing the way

data were entered into a database [80], [81]. For academic papers, the primary objective is not to

share data in order to better understand the manufacturing distributions, but rather to communicate

findings of interesting theories and phenomena. From this perspective, it may be infeasible to expect

researchers to standardize their data and enter it into databases. However, at the very least researchers

should make this information available somewhere in their papers. As it currently stands, most of the

research presented by these AM papers are not reproducible, because the set of processing parameters

necessary to repeat the experiment are not published. Perhaps it is time to standardize the processing

parameters published by AM researchers.

4.4 Compositions and Properties

4.4.1 Results Overview

Due to the limitations described in this chapter, it is challenging to extract information with the kind

of granularity and accuracy that is required to fully characterize the manufacturing variability of AM.

The greatest challenge is linking information across a document, and while some important steps have

been taken in this work, there are remaining obstacles for this task. Regardless of these challenges, it

is possible to extract some information, like material compositions and mechanical properties.

4.4.2 Tested Compositions

A powerful application of text-mining is mapping the landscape of an entire research field. For instance,
using the pipeline it is possible to consider all the materials that have been studied, and determine if

there are sets of materials that are under-researched. In order to create this landscape, I collect alloy

compositions from all the conventional and AM papers in the database, and project these compositions

onto a 2D grid using Principal Component Analysis (PCA). Each conventionally manufactured material

is represented by a circle, and each AM material is represented by a cross. For the conventionally

manufactured materials, I color each data point depending on what element has the highest proportion.

The results are as shown in Figure 4-14.

Due to the nature of PCA, the axes do not necessarily have an intuitive interpretation. However,

the idea is that materials that are similar also lie close together in Figure 4-14. Looking at the plot,

four groups can be identified, where each corresponds to a different base element (iron, titanium,
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aluminum, and nickel). The apexes of the triangles tend to be pure elements. For instance, on the very

left-hand-side of Figure 4-14 we can materials that are almost entirely pure iron. Moving towards the

right brings us closer to high-alloyed steels.

It appears from this plot that AM researchers tend to focus on a select set of materials. There

are clusters of AM papers around Ti6Al4V, Inconcel 718, AlSi10Mg, and some steel compositions, but

few papers exploring other materials. This plot allows the identification of materials that have not been

published on for AM. Note, however, that this does not identify why these materials have not been

investigated. For instance, perhaps researchers did attempt to manufacture these other materials but

did not get publishable results.

4.4.3 Variability

Linking mechanical properties and compositions can often be done with high reliability. This is because

both these data are given in tables, which can be linked using the predicted sample names, or because

there is only a single material in the paper, thereby making data linking trivial. Furthermore, with a

small dataset it is feasible to manually verify the data.

One question we can then ask is: how much do mechanical properties vary for a given material?

To answer this question I selected some standard materials (316L SS, AlSi10Mg, Inconel 718, pure Fe,

and Ti6Al4v), and found all materials that are similar to these materials. This is done by first taking the

matrix of compositions and normalizing the values so that each element has a mean of zero and a range

of one. I then draw a small hyper-sphere in this linear space that is centered around these materials.

Similar materials are those that fall within the bounds of this sphere. The 0.2% yield strength data were

then extracted from these papers and were manually checked and corrected where necessary.

The results are then split depending on whether the materials were manufactured with AM tech-

niques or with conventional techniques, and are plotted as box plots as shown in Figure 4-15. Note that

for both conventional and AM, the variability in properties is high, with ranges of a few hundred MPa

within a material being fairly common. There are situations where the empirical variability of AM is

larger than that of conventional manufacturing processes, but this is not always true.

The insight derived from this plot is that the range in mechanical properties can be quite large for

a given material, which suggests that the processing conditions are extremely important in determining

the behavior of a material.
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Figure 4-14: Composition of conventionally manufactured materials (circles) and AM materials (crosses), pro-

jected down onto two dimensions using Principal Component Analysis. Each point on the plot represents a

material. The colors correspond to the most dominant element in that material. As can be seen, AM is not yet

as diverse as conventional processes, and tends to dump together, especially in Aluminum and Titanium based
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Figure 4-15: Boxplots of yield strengths for various materials manufactured using conventional processes or AM

processes.

4.5 Conclusions

Significant valuable information exists as unstructured data in the form of published documents. The

idea of extracting information from these documents is a powerful one, but current text-mining tech-

niques are not yet in the position to reliably extract and link data found across a document. Without

this linking, it becomes impossible to establish relationships between material composition, process-

ing parameters, and mechanical properties, which is necessary in order to use these data to better

understand manufacturing processes.

In this chapter, I demonstrated that in many manufacturing and materials science papers, multiple

experiments are described and that it is not obvious how to keep these multiple experiments separated

when doing information extraction. I argue for a strategy to identify the "sample names", which are

the terms the researchers use to differentiate between various experiments in a single paper. Getting

the sample names from a paper is nontrivial, as contextualized information is needed to accurately

determine whether a word or sequence of words is a sample name or not. I develop a dataset of around

14,000 papers and create a two-staged model that is able to bring in contextualized information from

the entire paper. This is an important step, but more work is required to more reliably extract the

sample names from papers and to use these sample names to extract information.

This chapter also discusses the problem of missing data. Beyond the implications on data analysis,
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the lack of consistent information publishing makes the results of many of these papers unreproducible.

For AM, which is a relatively well-established technology, it might make sense for researchers to agree

to a standard list of processing parameters they will use when publishing their results.

Regardless of these limitations, some useful data can be extracted from papers which can be

used to obtain a big-picture overview of what materials have or have not been published about in

AM, or to compare the mechanical properties of AM versus conventional manufacturing for specific

materials.
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Chapter 5

Conclusions

Manufacturing variability is a central concept in manufacturing, but beyond select fields of study, manu-

facturing variability is often neglected by researchers. In this thesis, I have explored this topic by asking

two questions: (1) what are the effects of manufacturing variability, and why is it important? And (2)

can we gather data from published documents in order to characterize manufacturing variability, and

what are some challenges associated with that?

In Chapter 2, I began to answer the first question by introducing the idea of manufacturing

variability and arguing that there will always be some differences between manufactured parts. In

order to deal with this uncertainty, most products have some degree of overdesign built in. As a result

of this overdesign, products are rated to be less strong than they might be on average, which means that

more material is required, driving up costs. Furthermore, this overdesign implies that parts tend to be

heavier than if there were no overdesign. The additional materials lead to higher embodied energy, and

also higher fuel consumption if the part is used in a vehicle. In this way, manufacturing variability can

be linked to environmental and economic costs. Some examples illustrated this relation. For instance,

roughly 19% of concrete was found to be produced solely to counter the effects of manufacturing

variability. Or in the case of fiber composites, variability was found to play the largest role in production

cost and energy after the design specifications. For a Boeing 787, under conservative assumptions,

reducing the variability of fiber composite parts could save millions of dollars in fuel and ktons of CO2

over the lifetime of a single aircraft.

In Chapter 3, I continued with the question of the effects of manufacturing variability by point-

ing out that manufacturers can be reluctant to adopt a new material or process if the distribution of

properties are not fully understood. Underestimating the variance in a process might lead to too many

out-of-spec parts, which could damage the reputation of a company, or worse, lead to catastrophic

failure. Furthermore, certifying such a process becomes impossible, and as a result, the products will

not legally be able to enter the market. It is therefore critical to be able to estimate the variance in

a process, but as demonstrated, accurately estimating the variability of a distribution requires dozens

if not hundreds of samples. Nevertheless, new processes are continuously adopted by industry. Fiber

composites is an important example, where numerous issues around process control and manufactur-

ing variability were overcome by an industry, academic, and government effort through the ACT and

AGATE programs. Both programs continue to influence industry through the regulatory framework that

was developed as a result of the work that was done under these programs. Additive Manufacturing

(AM) finds itself in a similar situation as fiber composites in the late 1980s, and perhaps it is time to
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use the knowledge we have gained from the ACT and AGATE experience to develop a similar strategy

for this technology.

In Chapter 4, I continued to focus on AM, but through the lens of the second thesis question: can

we use published documents to characterize manufacturing variability? Thousands of experiments have

been conducted on AM, but the results are mostly only available in published documents in unstructured

formats like texts. Developments in text-mining make it feasible to extract some information at scale

from these documents, but current techniques are insufficient to accurately extract all the important

information. Specifically, most text-mining techniques focus on within-sentence extraction, while for

this task the information needs to be linked across the entire document. This issue is reframed by

looking at sample names in a paper, and a model is put forward to extract the sample names of a

document. These sample names are then used to link information across a document. A clear area

of future work is improving the sample names classifier further, and then using the sample names to

extract more granular data from documents. The second issue in text-mining is that researchers do not

standardize the process parameters they include in their papers. This makes it hard to build a complete

dataset of alloy composition, processing parameters, and mechanical properties. It also raises questions

around reproducibility. It seems that AM is mature enough as a technology to warrant a standardized

way of describing this process, which would greatly aid the sharing of results. Ideally such a system

would bypass any need for text-mining.

Ultimately this thesis argues that anyone developing new materials or manufacturing processes,
or modeling the performance of materials, should view the properties of their products as distributions

rather than point estimates. Processes are not deterministic. Without acknowledging this fact we will

continue to over-promise and under-deliver the performance and timelines of emerging manufacturing

techniques.
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APPENDIX A. APPENDIX: LIST OF LABELS FOR TOKEN CLASSIFICATION

Appendix A

Appendix: List of Labels for Token

Classification

0: "null",

1: "nonrecipe-material",

2: "material",

3: "precursor",

4: "solvent",

5: "gas",

6: "target",

7: "unspecified-material",

8: "number",

9: "amount-unit",

10: "condition-unit",

11: "property-unit",

12: "apparatus-unit",

13: "condition-type",

14: "property-type",

15: "apparatus-property-type",

16: "meta" ,

17: "reference",

18: "brand",

19: "condition-misc",

20: "property-misc",
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21: "amount-misc",

22: "apparatus-descriptor",

23: "material-descriptor",

24: "synthesis-apparatus",

25: "characterization-apparatus",

26: "operation"



APPENDIX B. APPENDIX: DICTIONARY MAPPING OF AM TERMS

Appendix B

Appendix: Dictionary Mapping of AM

Terms

This dictionary was built while manually annotating 90 AM papers in order to map synonyms to the

same word. For instance 'max laser power' and 'maximum output laser power' are really the same thing,

but synonyms.

' ebm':'process'

' slm':'process'

' sls':'process'

'0.2 yield strength':'yield strength.1'

'0.2% offset yield strenght':'yield strength.1'

'0.2% offset yield strength':'yield strength.1'

'0.2% ys':'yield strength.1'

'2% yield strength':'yield strength.1'

'3161':'3161 stainless steel'

'3161 ss':'3161 stainless steel'

'3161 stainless steel':'3161 stainless steel'

'3d printing':'additive manufacturing'

'? 0.2':'yield strength.1'

'?m':'micrometer'

'accelerating voltage':'accelerating voltage'

'additive manufacturing':'additive manufacturing'

'alsil0mg':'alsil0mg'

'alsil0mg powder':'alsil0mg'

'alsil0mg-200c powder':'alsil0mg'
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'areal surface roughness': 'surface roughness'

'areal surface roughness, sa':'surface roughness'

'average 0.2% yield strength':'yield strength.1'

'average carbon fibre length':'carbon fiber length'

'average diameter':'particle size'

'average particle size':'particle size'

'average powder size':'particle size'

'average uts':'ultimate tensile strength'

'bal':'balance'

'bal.':'balance'

'balance':'balance'

'baseplate temperature':'substrate temperature'

'beam current':'beam current'

'beam diameter':'beam diameter'

'beam spot size':'beam diameter'

'beam velocity':'travel speed'

'beam voltage':'beam voltage'

'beam wavelength':'wavelength'

'bed temperature':'substrate temperature'

'build direction':'build direction'

'build orientation':'build direction'

'build platform temperature':'substrate temperature'

'building plate size':'platform dimesion'

'building platform pre-heat temperature':'substrate temperature'

'building platform preheated temperature':'substrate temperature'

'carbon fiber length':'carbon fiber length'

'chamber pressure':'chamber pressure'
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'contour spacing':'contour spacing'

'cube dimensions':'cube dimensions'

'cube height':'cube height'

'cubic specimen':'cube dimensions'

'cubic specimens':'cubic specimens'

'ded':'directed energy deposition'

'density':'density'

'density of carbon fibre material':'density of carbon fibre material'

'density of pa-12 pellets':'density of pa-12 pellets'

'diameter':'diameter'

'diameter fiber':'fiber diameter'

'dimension':'dimensions'

'dimensions':'dimensions'

'dimensions of specimens for flexural tests':'dimensions of specimens for flexural tests'

'direct melt electrospinning':'process'

'direct melt-electrospinning':'process'

'direct metal laser sintering':'process'

'direct metal tooling':'process'

'directed energy deposition':'directed energy deposition'

'e':'stiffness'

'e (modulus)':'stiffness'

'e-f ':'stiffness'

'ebm':'electron beam melting'

'edge length':'edge length'

'el':'elongation to fracture'

'electron beam':'process'

'electron beam melting': 'process'
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'eli grade arcam ti-6al-4v':'ti-6al-4v'

'elong':'elongation to fracture'

'elongated coarse grains size':'elongated coarse grains size'

'elongation':'elongation to fracture'

'elongation at break':'elongation to fracture'

'elongation at failure':'elongation to fracture'

'elongation at fracture':'elongation to fracture'

'elongation per astm e8':'elongation per astm e8'

'elongation to failure':'elongation to fracture'

'elongation to fracture':'elongation to fracture'

'energy deposition':'process'

'exposure time':'exposure time'

'fatigue limit':'fatigue limit'

'feed rate':'powder feed rate'

'fiber diameter':'fiber diameter'

'fill density of the device':'fill density of the device'

'fill laser power':'fill laser power'

'fill pattern':'fill pattern'

'focal length':'focal length'

'geometry':'hatch angle'

'grain diameter':'grain diameter'

'hardness':'hardness'

'hardness ':'hardness'

'hatch angle':'hatch angle'

'hatch direction':'hatch angle'

'hatch distance':'hatch spacing'

'hatch space':'hatch spacing'
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'hatch spacing':'hatch spacing'

'hatch spacing overlap':'hatch spacing overlap'

'hatch-spacing':'hatch spacing'

'hatching distance':'hatch spacing'

'hatching spacing':'hatch spacing'

'height':'height'

'high temperature laser sinter':'process'

'horizontal overlap distance':'hatch spacing overlap'

'increment in z':'layer thickness'

'increment of z':'layer thickness'

'inkjet printing':'process'

'laser additive manufacturing':'process'

'laser beam':'laser beam'

'laser beam diameter':'beam diameter'

'laser beam rotation':'laser beam rotation'

'laser beam speed':'travel speed'

'laser beam spot size':'beam diameter'

'laser cladding':'process'

'laser diameter':'beam diameter'

'laser engineered net shaping':'process'

'laser focus offset':'laser focus offset'

'laser maximum power':'maximum laser power'

'laser melting deposition':'process'

'laser metal deposition':'process'

'laser powder deposition':'process'

'laser power':'laser power'

'laser power density':'power density'
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'laser scan spacimg':'hatch spacing'

'laser scan speed':'travel speed'

'laser scanning speed':'travel speed'

'laser scanning velocity':'travel speed'

'laser solid forming':'process'

'laser spot diameter':'beam diameter'

'laser spot size':'beam diameter'

'laser spot size diameter':'beam diameter'

'laser stereolithography':'stereo lithography'

'laser travel speed':'travel speed'

'laser wavelength':'wavelength'

'layer height':'layer thickness'

'layer height (thickness)':'layer thickness'

'layer thickness':'layer thickness'

'layers of the slices':'layers of the slices'

'line energy':'line energy'

'line offset':'offset'

'linear heat input':'line energy'

'machine voltage':'machine voltage'

'max laser power':'maximum laser power'

'max power':'maximum laser power'

'maximium power':'maximum laser power'

'maximum elongation':'elongation to fracture'

'maximum laser output power':'maximum laser power'

'maximum laser power':'maximum laser power'

'maximum output':'maximum laser power'

'maximum output power':'maximum laser power'
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'maximum power':'maximum laser power'

'maximum scanning speed':'travel speed'

'mean particle size':'particle size'

'measured elongation':'elongation to fracture'

'melt electrospinning writing': 'process'

'microhardness':'hardness'

'micrometer':'micrometer'

'mixing duration':'mixing duration'

'modulus (young)':'stiffness'

'mwcnt diameter':'mwcnt diameter'

'mwcnt length':'carbon fiber length'

'mwcnt width':'mwcnt diameter'

'offset': 'offset'

'offset height':'offset'

'offset spacing':'offset'

'optical fiber diameter':'fiber diameter'

'optical fiber width':'fiber diameter'

'output laser power':'laser power'

'particle size':'particle size'

'particle size distribution':'particle size'

'percent elongation':'elongation to fracture'

'plate size':'platform dimesion'

'platform dimension':'platform dimesion'

'platform dimesion':'platform dimesion'

'platform size':'platform dimesion'

'platform temperature':'substrate temperature'

'pore volume fraction':'porosity'
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'porosity':'porosity'

'porosity levels':'porosity'

'powder average size':'particle size'

'powder bed fusion':'process'

'powder bed pre-heat temperature':'substrate temperature'

'powder bed temperature':'substrate temperature'

'powder diameter':'particle size'

'powder feed rate':'powder feed rate'

'powder feeding rate':'powder feed rate'

'powder grain size':'particle size'

'powder layer thickness':'layer thickness'

'powder mass flow':'powder mass flow'

'powder particle size':'particle size'

'powder size':'particle size'

'powder size range':'particle size'

'powder thickness':'layer thickness'

'power':'laser power'

'power density':'power density'

'pre-heating temperature':'substrate temperature'

'preheat':'substrate temperature'

'preheating temperature':'substrate temperature'

'rapid prototyping':'additive manufacturing'

'raster diameter':'raster diameter'

'raster orientation':'raster orientation'

'relative density':'density'

'remainder':'balance'

'roof and floor layers':'roof and floor layers'
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'rotation':'laser beam rotation'

'rotation speed':'rotation speed'

'scan rate':'travel speed'

'scan rotation between successive layers':'scan rotation between successive layers'

'scan spacing':'hatch spacing'

'scan speed':'travel speed'

'scan vector length':'scan vector length'

'scanning rate':'travel speed'

'scanning speed':'travel speed'

'scanning velocity':'travel speed'

'sebm':'electron beam melting'

'selective electron beam melting':'electron beam melting'

'selective laser melting':'process'

'selective laser sintering':'process'

'setting power':'setting power'

'size':'size'

'slm':'selective laser melting'

'sls':'selective laser sintering'

'spacing':'hatch spacing'

'specific power':'specific power'

'speed':'travel speed'

'spherical pores average diameter':'spherical pores average diameter'

'spot diameter':'beam diameter'

'spot size':'beam diameter'

'ss3161':'3161 stainless steel'

'start plate temperature':'substrate temperature'

'start-plate temperature': 'substrate temperature'
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'step size':'layer thickness'

'stereo lithography':'stereo lithography'

'stiffness':'stiffness'

'stl':'stereo lithography'

'strain to failure':'elongation to fracture'

'strain to fracture':'elongation to fracture'

'substrate dimensions':'platform dimesion'

'substrate temperature':'substrate temperature'

'surface roughess':'surface roughness'

'surface roughness':'surface roughness'

'tall':'all'

'temperature':'substrate temperature'

'temperature of nozzle':'temperature of nozzle'

'tensile elongation':'elongation to fracture'

'tensile strain at break':'elongation to fracture'

'tensile strength':'tensile strength'

'tensile stress at break':'tensile stress at break'

'tensile stress at yield (offset 0.2

'thick':'thick'

'thickness':'thick'

'thickness of the layers':'layer thickness'

'thickness per layer':'layer thickness'

'three-dimensional printing':'process'

'ti-6al-4v':'ti-6al-4v'

'ti-6al-4v grade 23':'ti-6al-4v'

'ti6al4v':'ti-6al-4v'

'ti6al4v-eli':'ti-6al-4v'
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'travel speed':'travel speed'

'ultimate compressive strength':'ultimate tensile strength'

'ultimate tensile strength':'ultimate tensile strength'

'ultrasonic additive manufacturing':'process'

'um':'micrometer'

'unnamed: 48':'unnamed: 48'

'uts':'ultimate tensile strength'

'vertical step size':'layer thickness'

'vicker hardness':'hardness'

'vickers hardness':'hardness'

'vickers micro hardness':'hardness'

'voltage':'beam voltage'

'wall layers':'wall layers'

'wavelength':'wavelength'

'wire arc additive manufacturing':'process'

'wire feed rate':'wire feed rate'

'working distance':'working distance'

'yield strenght':'yield strength'

'yield strength':'yield strength'

'yield strength. 1':'yield strength.1'

'yield stress':'yield strength'

'young's modulus':'stiffness'
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Appendix C

Appendix: JSON Template for Manual AM

Extraction

metadata:

doi:

issn:

data:

global-parameters:

process:

atmosphere:

material:

pressure:

value:

unit:

flow-rate:

value:

unit:

scanning-strategy:

orientation:

materials:

- materialname:

materialmethod:

materialbrand:

composition:

unit:

Al:

B:

C:

Co:

Cr:

Cu:
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Fe:

H:

M:

Mg:

Mn:

Mo:

N:

Nb:

Ni:

0:

P:

Pb:

S:

Si:

Sn:

Ta:

Ti:

V :

W:

Zn:

misc:

blend-ratio:

apparatuses:

- apparatus-type:

brand:

heat-treatments:

- treatment-name:

treatment-step-number:

type:

time:

value:

unit:

error:

temperature:
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value:

unit:

error:

rate:

value:

unit:

error:

pressure:

value:

unit:

error:

properties:
- property-name:

unit:

value:

error:

samples:

- sample-id:

process:

atmosphere:

material:

pressure:

value:

unit:

flow-rate:

value:

unit:

scanning-strategy:

orientation:

materials:

- material-name:

material-method:

material-brand:

composition:

unit:
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AL:

B:

C:

co:

Cr:

Cu:

Fe:

H:

M:

Mg:

Mn:

Mo:

N:

Nb:

Ni:

0:

P:

Pb:

S :

Si:

Sn:

Ta:

Ti:

V:

W:

Zn:

misc:

blend-ratio:

apparatuses:

- apparatus-type:

brand:

heat-treatments:

- treatmentname:

treatment-step-number:

type:
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time:

value:

unit:

error:

temperature:

value:

unit:

error:

rate:

value:

unit:

error:

pressure:

value:

unit:

error:

properties:

- property-name:

unit:

value:

error:


